一、学习内容
- k近邻(KNN)
- 决策树
- 线性回归
- 逻辑斯蒂回归
- 朴素贝叶斯
- 支持向量机(SVM)
- K-Means
二、算法代码
k近邻(KNN)
# -*- coding: UTF-8 -*-
import numpy as np
"""
函数说明:打开并解析文件,对数据进行分类:1代表不喜欢,2代表魅力一般,3代表极具魅力
Parameters:
filename - 文件名
Returns:
returnMat - 特征矩阵
classLabelVector - 分类Label向量
"""
def file2matrix(filename):
#打开文件
fr = open(filename)
#读取文件所有内容
arrayOLines = fr.readlines()
#得到文件行数
numberOfLines = len(arrayOLines)
#返回的NumPy矩阵,解析完成的数据:numberOfLines行,3列
returnMat = np.zeros((numberOfLines,3))
#返回的分类标签向量
classLabelVector = []
#行的索引值
index = 0
for line in arrayOLines:
#s.strip(rm),当rm空时,默认删除空白符(包括'\n','\r','\t',' ')
line = line.strip()
#使用s.split(str="",num=string,cout(str))将字符串根据'\t'分隔符进行切片。
listFromLine = line.split('\t')
#将数据前三列提取出来,存放到returnMat的NumPy矩阵中,也就是特征矩阵
returnMat[index,:] = listFromLine[0:3]
#根据文本中标记的喜欢的程度进行分类,1代表不喜欢,2代表魅力一般,3代表极具魅力
if listFromLine[-1] == 'didntLike':
classLabelVector.append(1)
elif listFromLine[-1] == 'smallDoses':
classLabelVector.append(2)
elif listFromLine[-1] == 'largeDoses':
classLabelVector.append(3)
index += 1
return returnMat, classLabelVector
"""
函数说明:main函数
Parameters:
无
Returns:
无
"""
if __name__ == '__main__':
#打开的文件名
filename = "datingTestSet.txt"
#打开并处理数据
datingDataMat, datingLabels = file2matrix(filename)
print(datingDataMat)
print(datingLabels)
"""
函数说明:对数据进行归一化
Parameters:
dataSet - 特征矩阵
Returns:
normDataSet - 归一化后的特征矩阵
ranges - 数据范围
minVals - 数据最小值
"""
def autoNorm(dataSet):
#获得数据的最小值
minVals = dataSet.min(0)
maxVals = dataSet.max(0)
#最大值和最小值的范围
ranges = maxVals - minVals
#shape(dataSet)返回dataSet的矩阵行列数
normDataSet = np.zeros(np.shape(dataSet))
#返回dataSet的行数
m = dataSet.shape[0]
#原始值减去最小值
normDataSet = dataSet - np.tile(minVals, (m, 1))
#除以最大和最小值的差,得到归一化数据
normDataSet = normDataSet / np.tile(ranges, (m, 1))
#返回归一化数据结果,数据范围,最小值
return normDataSet, ranges, minVals
# -*- coding: UTF-8 -*-
import numpy as np
import operator
"""
函数说明:kNN算法,分类器
Parameters:
inX - 用于分类的数据(测试集)
dataSet - 用于训练的数据(训练集)
labes - 分类标签
k - kNN算法参数,选择距离最小的k个点
Returns:
sortedClassCount[0][0] - 分类结果
"""
def classify0(inX, dataSet, labels, k):
#numpy函数shape[0]返回dataSet的行数
dataSetSize = dataSet.shape[0]
#在列向量方向上重复inX共1次(横向),行向量方向上重复inX共dataSetSize次(纵向)
diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet
#二维特征相减后平方
sqDiffMat = diffMat**2
#sum()所有元素相加,sum(0)列相加,sum(1)行相加
sqDistances = sqDiffMat.sum(axis=1)
#开方,计算出距离
distances = sqDistances**0.5
#返回distances中元素从小到大排序后的索引值
sortedDistIndices = distances.argsort()
#定一个记录类别次数的字典
classCount = {}
for i in range(k):
#取出前k个元素的类别
voteIlabel = labels[sortedDistIndices[i]]
#dict.get(key,default=None),字典的get()方法,返回指定键的值,如果值不在字典中返回默认值。
#计算类别次数
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
#python3中用items()替换python2中的iteritems()
#key=operator.itemgetter(1)根据字典的值进行排序
#key=operator.itemgetter(0)根据字典的键进行排序
#reverse降序排序字典
sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
#返回次数最多的类别,即所要分类的类别
return sortedClassCount[0][0]
"""
函数说明:分类器测试函数
Parameters:
无
Returns:
normDataSet - 归一化后的特征矩阵
ranges - 数据范围
minVals - 数据最小值
"""
def datingClassTest():
#打开的文件名
filename = "datingTestSet.txt"
#将返回的特征矩阵和分类向量分别存储到datingDataMat和datingLabels中
datingDataMat, datingLabels = file2matrix(filename)
#取所有数据的百分之十
hoRatio = 0.10
#数据归一化,返回归一化后的矩阵,数据范围,数据最小值
normMat, ranges, minVals = autoNorm(datingDataMat)
#获得normMat的行数
m = normMat.shape[0]
#百分之十的测试数据的个数
numTestVecs = int(m * hoRatio)
#分类错误计数
errorCount = 0.0
for i in range(numTestVecs):
#前numTestVecs个数据作为测试集,后m-numTestVecs个数据作为训练集
classifierResult = classify0(normMat[i,:], normMat[numTestVecs:m,:],
datingLabels[numTestVecs:m], 4)
print("分类结果:%d\t真实类别:%d" % (classifierResult, datingLabels[i]))
if classifierResult != datingLabels[i]:
errorCount += 1.0
print("错误率:%f%%" %(errorCount/float(numTestVecs)*100))
决策树
"""
函数说明:按照给定特征划分数据集
Parameters:
dataSet - 待划分的数据集
axis - 划分数据集的特征
value - 需要返回的特征的值
Returns:
无
"""
def splitDataSet(dataSet, axis, value):
retDataSet = [] #创建返回的数据集列表
for featVec in dataSet: #遍历数据集
if featVec[axis] == value:
reducedFeatVec = featVec[:axis] #去掉axis特征
reducedFeatVec.extend(featVec[axis+1:]) #将符合条件的添加到返回的数据集
retDataSet.append(reducedFeatVec)
return retDataSet #返回划分后的数据集
"""
函数说明:计算给定数据集的经验熵(香农熵)
Parameters:
dataSet - 数据集
Returns:
shannonEnt - 经验熵(香农熵)
"""
def calcShannonEnt(dataSet):
numEntires = len(dataSet) #返回数据集的行数
labelCounts = {} #保存每个标签(Label)出现次数的字典
for featVec in dataSet: #对每组特征向量进行统计
currentLabel = featVec[-1] #提取标签(Label)信息
if currentLabel not in labelCounts.keys(): #如果标签(Label)没有放入统计次数的字典,添加进去
labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1 #Label计数
shannonEnt = 0.0 #经验熵(香农熵)
for key in labelCounts: #计算香农熵
prob = float(labelCounts[key]) / numEntires #选择该标签(Label)的概率
shannonEnt -= prob * log(prob, 2) #利用公式计算
return shannonEnt #返回经验熵(香农熵)
"""
函数说明:选择最优特征
Parameters:
dataSet - 数据集
Returns:
bestFeature - 信息增益最大的(最优)特征的索引值
"""
def chooseBestFeatureToSplit(dataSet):
numFeatures = len(dataSet[0]) - 1 #特征数量
baseEntropy = calcShannonEnt(dataSet) #计算数据集的香农熵
bestInfoGain = 0.0 #信息增益
bestFeature = -1 #最优特征的索引值
for i in range(numFeatures): #遍历所有特征
#获取dataSet的第i个所有特征
featList = [example[i] for example in dataSet]
uniqueVals = set(featList) #创建set集合{},元素不可重复
newEntropy = 0.0 #经验条件熵
for value in uniqueVals: #计算信息增益
subDataSet = splitDataSet(dataSet, i, value) #subDataSet划分后的子集
prob = len(subDataSet) / float(len(dataSet)) #计算子集的概率
newEntropy += prob * calcShannonEnt(subDataSet) #根据公式计算经验条件熵
infoGain = baseEntropy - newEntropy #信息增益
# print("第%d个特征的增益为%.3f" % (i, infoGain)) #打印每个特征的信息增益
if (infoGain > bestInfoGain): #计算信息增益
bestInfoGain = infoGain #更新信息增益,找到最大的信息增益
bestFeature = i #记录信息增益最大的特征的索引值
return bestFeature
"""
函数说明:统计classList中出现此处最多的元素(类标签)
Parameters:
classList - 类标签列表
Returns:
sortedClassCount[0][0] - 出现此处最多的元素(类标签)
"""
def majorityCnt(classList):
classCount = {}
for vote in classList: #统计classList中每个元素出现的次数
if vote not in classCount.keys():classCount[vote] = 0
classCount[vote] += 1
sortedClassCount = sorted(classCount.items(), key = operator.itemgetter(1), reverse = True) #根据字典的值降序排序
return sortedClassCount[0][0] #返回classList中出现次数最多的元素
"""
"""
函数说明:创建决策树
Parameters:
dataSet - 训练数据集
labels - 分类属性标签
featLabels - 存储选择的最优特征标签
Returns:
myTree - 决策树
"""
def createTree(dataSet, labels, featLabels):
classList = [example[-1] for example in dataSet] #取分类标签(是否放贷:yes or no)
if classList.count(classList[0]) == len(classList): #如果类别完全相同则停止继续划分
return classList[0]
if len(dataSet[0]) == 1: #遍历完所有特征时返回出现次数最多的类标签
return majorityCnt(classList)
bestFeat = chooseBestFeatureToSplit(dataSet) #选择最优特征
bestFeatLabel = labels[bestFeat] #最优特征的标签
featLabels.append(bestFeatLabel)
myTree = {bestFeatLabel:{}} #根据最优特征的标签生成树
del(labels[bestFeat]) #删除已经使用特征标签
featValues = [example[bestFeat] for example in dataSet] #得到训练集中所有最优特征的属性值
uniqueVals = set(featValues) #去掉重复的属性值
for value in uniqueVals: #遍历特征,创建决策树。
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), labels, featLabels)
return myTree
线性回归
# -*- coding: utf-8 -*-
import numpy as np
class LinerRegression(object):
def __init__(self, learning_rate=0.01, max_iter=100, seed=None):
np.random.seed(seed)
self.lr = learning_rate
self.max_iter = max_iter
self.w = np.random.normal(1, 0.1)
self.b = np.random.normal(1, 0.1)
self.loss_arr = []
def fit(self, x, y):
self.x = x
self.y = y
for i in range(self.max_iter):
self._train_step()
self.loss_arr.append(self.loss())
# print('loss: \t{:.3}'.format(self.loss()))
# print('w: \t{:.3}'.format(self.w))
# print('b: \t{:.3}'.format(self.b))
def _f(self, x, w, b):
return x * w + b
def predict(self, x=None):
if x is None:
x = self.x
y_pred = self._f(x, self.w, self.b)
return y_pred
def loss(self, y_true=None, y_pred=None):
if y_true is None or y_pred is None:
y_true = self.y
y_pred = self.predict(self.x)
return np.mean((y_true - y_pred)**2)
def _calc_gradient(self):
d_w = np.mean((self.x * self.w + self.b - self.y) * self.x)
d_b = np.mean(self.x * self.w + self.b - self.y)
return d_w, d_b
def _train_step(self):
d_w, d_b = self._calc_gradient()
self.w = self.w - self.lr * d_w
self.b = self.b - self.lr * d_b
return self.w, self.b
# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
from liner_regression import *
def show_data(x, y, w=None, b=None):
plt.scatter(x, y, marker='.')
if w is not None and b is not None:
plt.plot(x, w*x+b, c='red')
plt.show()
# data generation
np.random.seed(272)
data_size = 100
x = np.random.uniform(low=1.0, high=10.0, size=data_size)
y = x * 20 + 10 + np.random.normal(loc=0.0, scale=10.0, size=data_size)
# plt.scatter(x, y, marker='.')
# plt.show()
# train / test split
shuffled_index = np.random.permutation(data_size)
x = x[shuffled_index]
y = y[shuffled_index]
split_index = int(data_size * 0.7)
x_train = x[:split_index]
y_train = y[:split_index]
x_test = x[split_index:]
y_test = y[split_index:]
# visualize data
# plt.scatter(x_train, y_train, marker='.')
# plt.show()
# plt.scatter(x_test, y_test, marker='.')
# plt.show()
# train the liner regression model
regr = LinerRegression(learning_rate=0.01, max_iter=10, seed=314)
regr.fit(x_train, y_train)
print('cost: \t{:.3}'.format(regr.loss()))
print('w: \t{:.3}'.format(regr.w))
print('b: \t{:.3}'.format(regr.b))
show_data(x, y, regr.w, regr.b)
# plot the evolution of cost
plt.scatter(np.arange(len(regr.loss_arr)), regr.loss_arr, marker='o', c='green')
plt.show()
逻辑斯蒂回归
# -*- coding: utf-8 -*-
import numpy as np
class LogisticRegression(object):
def __init__(self, learning_rate=0.1, max_iter=100, seed=None):
self.seed = seed
self.lr = learning_rate
self.max_iter = max_iter
def fit(self, x, y):
np.random.seed(self.seed)
self.w = np.random.normal(loc=0.0, scale=1.0, size=x.shape[1])
self.b = np.random.normal(loc=0.0, scale=1.0)
self.x = x
self.y = y
for i in range(self.max_iter):
self._update_step()
# print('loss: \t{}'.format(self.loss()))
# print('score: \t{}'.format(self.score()))
# print('w: \t{}'.format(self.w))
# print('b: \t{}'.format(self.b))
def _sigmoid(self, z):
return 1.0 / (1.0 + np.exp(-z))
def _f(self, x, w, b):
z = x.dot(w) + b
return self._sigmoid(z)
def predict_proba(self, x=None):
if x is None:
x = self.x
y_pred = self._f(x, self.w, self.b)
return y_pred
def predict(self, x=None):
if x is None:
x = self.x
y_pred_proba = self._f(x, self.w, self.b)
y_pred = np.array([0 if y_pred_proba[i] < 0.5 else 1 for i in range(len(y_pred_proba))])
return y_pred
def score(self, y_true=None, y_pred=None):
if y_true is None or y_pred is None:
y_true = self.y
y_pred = self.predict()
acc = np.mean([1 if y_true[i] == y_pred[i] else 0 for i in range(len(y_true))])
return acc
def loss(self, y_true=None, y_pred_proba=None):
if y_true is None or y_pred_proba is None:
y_true = self.y
y_pred_proba = self.predict_proba()
return np.mean(-1.0 * (y_true * np.log(y_pred_proba) + (1.0 - y_true) * np.log(1.0 - y_pred_proba)))
def _calc_gradient(self):
y_pred = self.predict()
d_w = (y_pred - self.y).dot(self.x) / len(self.y)
d_b = np.mean(y_pred - self.y)
return d_w, d_b
def _update_step(self):
d_w, d_b = self._calc_gradient()
self.w = self.w - self.lr * d_w
self.b = self.b - self.lr * d_b
return self.w, self.b
# -*- coding: utf-8 -*-
import numpy as np
def generate_data(seed):
np.random.seed(seed)
data_size_1 = 300
x1_1 = np.random.normal(loc=5.0, scale=1.0, size=data_size_1)
x2_1 = np.random.normal(loc=4.0, scale=1.0, size=data_size_1)
y_1 = [0 for _ in range(data_size_1)]
data_size_2 = 400
x1_2 = np.random.normal(loc=10.0, scale=2.0, size=data_size_2)
x2_2 = np.random.normal(loc=8.0, scale=2.0, size=data_size_2)
y_2 = [1 for _ in range(data_size_2)]
x1 = np.concatenate((x1_1, x1_2), axis=0)
x2 = np.concatenate((x2_1, x2_2), axis=0)
x = np.hstack((x1.reshape(-1,1), x2.reshape(-1,1)))
y = np.concatenate((y_1, y_2), axis=0)
data_size_all = data_size_1+data_size_2
shuffled_index = np.random.permutation(data_size_all)
x = x[shuffled_index]
y = y[shuffled_index]
return x, y
def train_test_split(x, y):
split_index = int(len(y)*0.7)
x_train = x[:split_index]
y_train = y[:split_index]
x_test = x[split_index:]
y_test = y[split_index:]
return x_train, y_train, x_test, y_test
朴素贝叶斯
# -*- coding: UTF-8 -*-
import numpy as np
from functools import reduce
"""
函数说明:创建实验样本
Parameters:
无
Returns:
postingList - 实验样本切分的词条
classVec - 类别标签向量
"""
def loadDataSet():
postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], #切分的词条
['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
['stop', 'posting', 'stupid', 'worthless', 'garbage'],
['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
classVec = [0,1,0,1,0,1] #类别标签向量,1代表侮辱性词汇,0代表不是
return postingList,classVec #返回实验样本切分的词条和类别标签向量
"""
函数说明:将切分的实验样本词条整理成不重复的词条列表,也就是词汇表
Parameters:
dataSet - 整理的样本数据集
Returns:
vocabSet - 返回不重复的词条列表,也就是词汇表
"""
def createVocabList(dataSet):
vocabSet = set([]) #创建一个空的不重复列表
for document in dataSet:
vocabSet = vocabSet | set(document) #取并集
return list(vocabSet)
"""
函数说明:根据vocabList词汇表,将inputSet向量化,向量的每个元素为1或0
Parameters:
vocabList - createVocabList返回的列表
inputSet - 切分的词条列表
Returns:
returnVec - 文档向量,词集模型
"""
def setOfWords2Vec(vocabList, inputSet):
returnVec = [0] * len(vocabList) #创建一个其中所含元素都为0的向量
for word in inputSet: #遍历每个词条
if word in vocabList: #如果词条存在于词汇表中,则置1
returnVec[vocabList.index(word)] = 1
else: print("the word: %s is not in my Vocabulary!" % word)
return returnVec #返回文档向量
"""
函数说明:朴素贝叶斯分类器训练函数
Parameters:
trainMatrix - 训练文档矩阵,即setOfWords2Vec返回的returnVec构成的矩阵
trainCategory - 训练类别标签向量,即loadDataSet返回的classVec
Returns:
p0Vect - 非侮辱类的条件概率数组
p1Vect - 侮辱类的条件概率数组
pAbusive - 文档属于侮辱类的概率
"""
def trainNB0(trainMatrix,trainCategory):
numTrainDocs = len(trainMatrix) #计算训练的文档数目
numWords = len(trainMatrix[0]) #计算每篇文档的词条数
pAbusive = sum(trainCategory)/float(numTrainDocs) #文档属于侮辱类的概率
p0Num = np.zeros(numWords); p1Num = np.zeros(numWords) #创建numpy.zeros数组,
p0Denom = 0.0; p1Denom = 0.0 #分母初始化为0.0
for i in range(numTrainDocs):
if trainCategory[i] == 1: #统计属于侮辱类的条件概率所需的数据,即P(w0|1),P(w1|1),P(w2|1)···
p1Num += trainMatrix[i]
p1Denom += sum(trainMatrix[i])
else: #统计属于非侮辱类的条件概率所需的数据,即P(w0|0),P(w1|0),P(w2|0)···
p0Num += trainMatrix[i]
p0Denom += sum(trainMatrix[i])
p1Vect = p1Num/p1Denom #相除
p0Vect = p0Num/p0Denom
return p0Vect,p1Vect,pAbusive #返回属于侮辱类的条件概率数组,属于非侮辱类的条件概率数组,文档属于侮辱类的概率
"""
函数说明:朴素贝叶斯分类器分类函数
Parameters:
vec2Classify - 待分类的词条数组
p0Vec - 侮辱类的条件概率数组
p1Vec -非侮辱类的条件概率数组
pClass1 - 文档属于侮辱类的概率
Returns:
0 - 属于非侮辱类
1 - 属于侮辱类
"""
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
p1 = reduce(lambda x,y:x*y, vec2Classify * p1Vec) * pClass1 #对应元素相乘
p0 = reduce(lambda x,y:x*y, vec2Classify * p0Vec) * (1.0 - pClass1)
print('p0:',p0)
print('p1:',p1)
if p1 > p0:
return 1
else:
return 0
"""
函数说明:测试朴素贝叶斯分类器
Parameters:
无
Returns:
无
"""
def testingNB():
listOPosts,listClasses = loadDataSet() #创建实验样本
myVocabList = createVocabList(listOPosts) #创建词汇表
trainMat=[]
for postinDoc in listOPosts:
trainMat.append(setOfWords2Vec(myVocabList, postinDoc)) #将实验样本向量化
p0V,p1V,pAb = trainNB0(np.array(trainMat),np.array(listClasses)) #训练朴素贝叶斯分类器
testEntry = ['love', 'my', 'dalmation'] #测试样本1
thisDoc = np.array(setOfWords2Vec(myVocabList, testEntry)) #测试样本向量化
if classifyNB(thisDoc,p0V,p1V,pAb):
print(testEntry,'属于侮辱类') #执行分类并打印分类结果
else:
print(testEntry,'属于非侮辱类') #执行分类并打印分类结果
testEntry = ['stupid', 'garbage'] #测试样本2
thisDoc = np.array(setOfWords2Vec(myVocabList, testEntry)) #测试样本向量化
if classifyNB(thisDoc,p0V,p1V,pAb):
print(testEntry,'属于侮辱类') #执行分类并打印分类结果
else:
print(testEntry,'属于非侮辱类') #执行分类并打印分类结果
if __name__ == '__main__':
testingNB()
支持向量机(SVM)
# -*-coding:utf-8 -*-
import matplotlib.pyplot as plt
import numpy as np
import random
class optStruct:
"""
数据结构,维护所有需要操作的值
Parameters:
dataMatIn - 数据矩阵
classLabels - 数据标签
C - 松弛变量
toler - 容错率
kTup - 包含核函数信息的元组,第一个参数存放核函数类别,第二个参数存放必要的核函数需要用到的参数
"""
def __init__(self, dataMatIn, classLabels, C, toler, kTup):
self.X = dataMatIn #数据矩阵
self.labelMat = classLabels #数据标签
self.C = C #松弛变量
self.tol = toler #容错率
self.m = np.shape(dataMatIn)[0] #数据矩阵行数
self.alphas = np.mat(np.zeros((self.m,1))) #根据矩阵行数初始化alpha参数为0
self.b = 0 #初始化b参数为0
self.eCache = np.mat(np.zeros((self.m,2))) #根据矩阵行数初始化虎误差缓存,第一列为是否有效的标志位,第二列为实际的误差E的值。
self.K = np.mat(np.zeros((self.m,self.m))) #初始化核K
for i in range(self.m): #计算所有数据的核K
self.K[:,i] = kernelTrans(self.X, self.X[i,:], kTup)
def kernelTrans(X, A, kTup):
"""
通过核函数将数据转换更高维的空间
Parameters:
X - 数据矩阵
A - 单个数据的向量
kTup - 包含核函数信息的元组
Returns:
K - 计算的核K
"""
m,n = np.shape(X)
K = np.mat(np.zeros((m,1)))
if kTup[0] == 'lin': K = X * A.T #线性核函数,只进行内积。
elif kTup[0] == 'rbf': #高斯核函数,根据高斯核函数公式进行计算
for j in range(m):
deltaRow = X[j,:] - A
K[j] = deltaRow*deltaRow.T
K = np.exp(K/(-1*kTup[1]**2)) #计算高斯核K
else: raise NameError('核函数无法识别')
return K #返回计算的核K
def loadDataSet(fileName):
"""
读取数据
Parameters:
fileName - 文件名
Returns:
dataMat - 数据矩阵
labelMat - 数据标签
"""
dataMat = []; labelMat = []
fr = open(fileName)
for line in fr.readlines(): #逐行读取,滤除空格等
lineArr = line.strip().split('\t')
dataMat.append([float(lineArr[0]), float(lineArr[1])]) #添加数据
labelMat.append(float(lineArr[2])) #添加标签
return dataMat,labelMat
def calcEk(oS, k):
"""
计算误差
Parameters:
oS - 数据结构
k - 标号为k的数据
Returns:
Ek - 标号为k的数据误差
"""
fXk = float(np.multiply(oS.alphas,oS.labelMat).T*oS.K[:,k] + oS.b)
Ek = fXk - float(oS.labelMat[k])
return Ek
def selectJrand(i, m):
"""
函数说明:随机选择alpha_j的索引值
Parameters:
i - alpha_i的索引值
m - alpha参数个数
Returns:
j - alpha_j的索引值
"""
j = i #选择一个不等于i的j
while (j == i):
j = int(random.uniform(0, m))
return j
def selectJ(i, oS, Ei):
"""
内循环启发方式2
Parameters:
i - 标号为i的数据的索引值
oS - 数据结构
Ei - 标号为i的数据误差
Returns:
j, maxK - 标号为j或maxK的数据的索引值
Ej - 标号为j的数据误差
"""
maxK = -1; maxDeltaE = 0; Ej = 0 #初始化
oS.eCache[i] = [1,Ei] #根据Ei更新误差缓存
validEcacheList = np.nonzero(oS.eCache[:,0].A)[0] #返回误差不为0的数据的索引值
if (len(validEcacheList)) > 1: #有不为0的误差
for k in validEcacheList: #遍历,找到最大的Ek
if k == i: continue #不计算i,浪费时间
Ek = calcEk(oS, k) #计算Ek
deltaE = abs(Ei - Ek) #计算|Ei-Ek|
if (deltaE > maxDeltaE): #找到maxDeltaE
maxK = k; maxDeltaE = deltaE; Ej = Ek
return maxK, Ej #返回maxK,Ej
else: #没有不为0的误差
j = selectJrand(i, oS.m) #随机选择alpha_j的索引值
Ej = calcEk(oS, j) #计算Ej
return j, Ej #j,Ej
def updateEk(oS, k):
"""
计算Ek,并更新误差缓存
Parameters:
oS - 数据结构
k - 标号为k的数据的索引值
Returns:
无
"""
Ek = calcEk(oS, k) #计算Ek
oS.eCache[k] = [1,Ek] #更新误差缓存
def clipAlpha(aj,H,L):
"""
修剪alpha_j
Parameters:
aj - alpha_j的值
H - alpha上限
L - alpha下限
Returns:
aj - 修剪后的alpah_j的值
"""
if aj > H:
aj = H
if L > aj:
aj = L
return aj
def innerL(i, oS):
"""
优化的SMO算法
Parameters:
i - 标号为i的数据的索引值
oS - 数据结构
Returns:
1 - 有任意一对alpha值发生变化
0 - 没有任意一对alpha值发生变化或变化太小
"""
#步骤1:计算误差Ei
Ei = calcEk(oS, i)
#优化alpha,设定一定的容错率。
if ((oS.labelMat[i] * Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i] * Ei > oS.tol) and (oS.alphas[i] > 0)):
#使用内循环启发方式2选择alpha_j,并计算Ej
j,Ej = selectJ(i, oS, Ei)
#保存更新前的aplpha值,使用深拷贝
alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy();
#步骤2:计算上下界L和H
if (oS.labelMat[i] != oS.labelMat[j]):
L = max(0, oS.alphas[j] - oS.alphas[i])
H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
else:
L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
H = min(oS.C, oS.alphas[j] + oS.alphas[i])
if L == H:
print("L==H")
return 0
#步骤3:计算eta
eta = 2.0 * oS.K[i,j] - oS.K[i,i] - oS.K[j,j]
if eta >= 0:
print("eta>=0")
return 0
#步骤4:更新alpha_j
oS.alphas[j] -= oS.labelMat[j] * (Ei - Ej)/eta
#步骤5:修剪alpha_j
oS.alphas[j] = clipAlpha(oS.alphas[j],H,L)
#更新Ej至误差缓存
updateEk(oS, j)
if (abs(oS.alphas[j] - alphaJold) < 0.00001):
print("alpha_j变化太小")
return 0
#步骤6:更新alpha_i
oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])
#更新Ei至误差缓存
updateEk(oS, i)
#步骤7:更新b_1和b_2
b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,i] - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[i,j]
b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,j]- oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[j,j]
#步骤8:根据b_1和b_2更新b
if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1
elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2
else: oS.b = (b1 + b2)/2.0
return 1
else:
return 0
def smoP(dataMatIn, classLabels, C, toler, maxIter, kTup = ('lin',0)):
"""
完整的线性SMO算法
Parameters:
dataMatIn - 数据矩阵
classLabels - 数据标签
C - 松弛变量
toler - 容错率
maxIter - 最大迭代次数
kTup - 包含核函数信息的元组
Returns:
oS.b - SMO算法计算的b
oS.alphas - SMO算法计算的alphas
"""
oS = optStruct(np.mat(dataMatIn), np.mat(classLabels).transpose(), C, toler, kTup) #初始化数据结构
iter = 0 #初始化当前迭代次数
entireSet = True; alphaPairsChanged = 0
while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)): #遍历整个数据集都alpha也没有更新或者超过最大迭代次数,则退出循环
alphaPairsChanged = 0
if entireSet: #遍历整个数据集
for i in range(oS.m):
alphaPairsChanged += innerL(i,oS) #使用优化的SMO算法
print("全样本遍历:第%d次迭代 样本:%d, alpha优化次数:%d" % (iter,i,alphaPairsChanged))
iter += 1
else: #遍历非边界值
nonBoundIs = np.nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0] #遍历不在边界0和C的alpha
for i in nonBoundIs:
alphaPairsChanged += innerL(i,oS)
print("非边界遍历:第%d次迭代 样本:%d, alpha优化次数:%d" % (iter,i,alphaPairsChanged))
iter += 1
if entireSet: #遍历一次后改为非边界遍历
entireSet = False
elif (alphaPairsChanged == 0): #如果alpha没有更新,计算全样本遍历
entireSet = True
print("迭代次数: %d" % iter)
return oS.b,oS.alphas #返回SMO算法计算的b和alphas
def testRbf(k1 = 1.3):
"""
测试函数
Parameters:
k1 - 使用高斯核函数的时候表示到达率
Returns:
无
"""
dataArr,labelArr = loadDataSet('testSetRBF.txt') #加载训练集
b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 100, ('rbf', k1)) #根据训练集计算b和alphas
datMat = np.mat(dataArr); labelMat = np.mat(labelArr).transpose()
svInd = np.nonzero(alphas.A > 0)[0] #获得支持向量
sVs = datMat[svInd]
labelSV = labelMat[svInd];
print("支持向量个数:%d" % np.shape(sVs)[0])
m,n = np.shape(datMat)
errorCount = 0
for i in range(m):
kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1)) #计算各个点的核
predict = kernelEval.T * np.multiply(labelSV,alphas[svInd]) + b #根据支持向量的点,计算超平面,返回预测结果
if np.sign(predict) != np.sign(labelArr[i]): errorCount += 1 #返回数组中各元素的正负符号,用1和-1表示,并统计错误个数
print("训练集错误率: %.2f%%" % ((float(errorCount)/m)*100)) #打印错误率
dataArr,labelArr = loadDataSet('testSetRBF2.txt') #加载测试集
errorCount = 0
datMat = np.mat(dataArr); labelMat = np.mat(labelArr).transpose()
m,n = np.shape(datMat)
for i in range(m):
kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1)) #计算各个点的核
predict=kernelEval.T * np.multiply(labelSV,alphas[svInd]) + b #根据支持向量的点,计算超平面,返回预测结果
if np.sign(predict) != np.sign(labelArr[i]): errorCount += 1 #返回数组中各元素的正负符号,用1和-1表示,并统计错误个数
print("测试集错误率: %.2f%%" % ((float(errorCount)/m)*100)) #打印错误率
def showDataSet(dataMat, labelMat):
"""
数据可视化
Parameters:
dataMat - 数据矩阵
labelMat - 数据标签
Returns:
无
"""
data_plus = [] #正样本
data_minus = [] #负样本
for i in range(len(dataMat)):
if labelMat[i] > 0:
data_plus.append(dataMat[i])
else:
data_minus.append(dataMat[i])
data_plus_np = np.array(data_plus) #转换为numpy矩阵
data_minus_np = np.array(data_minus) #转换为numpy矩阵
plt.scatter(np.transpose(data_plus_np)[0], np.transpose(data_plus_np)[1]) #正样本散点图
plt.scatter(np.transpose(data_minus_np)[0], np.transpose(data_minus_np)[1]) #负样本散点图
plt.show()
if __name__ == '__main__':
testRbf()
K-Means
# -*- coding: utf-8 -*-
import numpy as np
class KMeansClassifier():
def __init__(self, k=3, initCent='random', max_iter=500 ):
self._k = k
self._initCent = initCent
self._max_iter = max_iter
self._clusterAssment = None
self._labels = None
self._sse = None
def _calEDist(self, arrA, arrB):
"""
功能:欧拉距离距离计算
输入:两个一维数组
"""
return np.math.sqrt(sum(np.power(arrA-arrB, 2)))
def _calMDist(self, arrA, arrB):
"""
功能:曼哈顿距离距离计算
输入:两个一维数组
"""
return sum(np.abs(arrA-arrB))
def _randCent(self, data_X, k):
"""
功能:随机选取k个质心
输出:centroids #返回一个m*n的质心矩阵
"""
n = data_X.shape[1] #获取特征的维数
centroids = np.empty((k,n)) #使用numpy生成一个k*n的矩阵,用于存储质心
for j in range(n):
minJ = min(data_X[:, j])
rangeJ = float(max(data_X[:, j] - minJ))
#使用flatten拉平嵌套列表(nested list)
centroids[:, j] = (minJ + rangeJ * np.random.rand(k, 1)).flatten()
return centroids
def fit(self, data_X):
"""
输入:一个m*n维的矩阵
"""
if not isinstance(data_X, np.ndarray) or \
isinstance(data_X, np.matrixlib.defmatrix.matrix):
try:
data_X = np.asarray(data_X)
except:
raise TypeError("numpy.ndarray resuired for data_X")
m = data_X.shape[0] #获取样本的个数
#一个m*2的二维矩阵,矩阵第一列存储样本点所属的族的索引值,
#第二列存储该点与所属族的质心的平方误差
self._clusterAssment = np.zeros((m,2))
if self._initCent == 'random':
self._centroids = self._randCent(data_X, self._k)
clusterChanged = True
for _ in range(self._max_iter): #使用"_"主要是因为后面没有用到这个值
clusterChanged = False
for i in range(m): #将每个样本点分配到离它最近的质心所属的族
minDist = np.inf #首先将minDist置为一个无穷大的数
minIndex = -1 #将最近质心的下标置为-1
for j in range(self._k): #次迭代用于寻找最近的质心
arrA = self._centroids[j,:]
arrB = data_X[i,:]
distJI = self._calEDist(arrA, arrB) #计算误差值
if distJI < minDist:
minDist = distJI
minIndex = j
if self._clusterAssment[i, 0] != minIndex or self._clusterAssment[i, 1] > minDist**2:
clusterChanged = True
self._clusterAssment[i,:] = minIndex, minDist**2
if not clusterChanged:#若所有样本点所属的族都不改变,则已收敛,结束迭代
break
for i in range(self._k):#更新质心,将每个族中的点的均值作为质心
index_all = self._clusterAssment[:,0] #取出样本所属簇的索引值
value = np.nonzero(index_all==i) #取出所有属于第i个簇的索引值
ptsInClust = data_X[value[0]] #取出属于第i个簇的所有样本点
self._centroids[i,:] = np.mean(ptsInClust, axis=0) #计算均值
self._labels = self._clusterAssment[:,0]
self._sse = sum(self._clusterAssment[:,1])
def predict(self, X):#根据聚类结果,预测新输入数据所属的族
#类型检查
if not isinstance(X,np.ndarray):
try:
X = np.asarray(X)
except:
raise TypeError("numpy.ndarray required for X")
m = X.shape[0]#m代表样本数量
preds = np.empty((m,))
for i in range(m):#将每个样本点分配到离它最近的质心所属的族
minDist = np.inf
for j in range(self._k):
distJI = self._calEDist(self._centroids[j,:], X[i,:])
if distJI < minDist:
minDist = distJI
preds[i] = j
return preds
class biKMeansClassifier():
"this is a binary k-means classifier"
def __init__(self, k=3):
self._k = k
self._centroids = None
self._clusterAssment = None
self._labels = None
self._sse = None
def _calEDist(self, arrA, arrB):
"""
功能:欧拉距离距离计算
输入:两个一维数组
"""
return np.math.sqrt(sum(np.power(arrA-arrB, 2)))
def fit(self, X):
m = X.shape[0]
self._clusterAssment = np.zeros((m,2))
centroid0 = np.mean(X, axis=0).tolist()
centList =[centroid0]
for j in range(m):#计算每个样本点与质心之间初始的平方误差
self._clusterAssment[j,1] = self._calEDist(np.asarray(centroid0), \
X[j,:])**2
while (len(centList) < self._k):
lowestSSE = np.inf
#尝试划分每一族,选取使得误差最小的那个族进行划分
for i in range(len(centList)):
index_all = self._clusterAssment[:,0] #取出样本所属簇的索引值
value = np.nonzero(index_all==i) #取出所有属于第i个簇的索引值
ptsInCurrCluster = X[value[0],:] #取出属于第i个簇的所有样本点
clf = KMeansClassifier(k=2)
clf.fit(ptsInCurrCluster)
#划分该族后,所得到的质心、分配结果及误差矩阵
centroidMat, splitClustAss = clf._centroids, clf._clusterAssment
sseSplit = sum(splitClustAss[:,1])
index_all = self._clusterAssment[:,0]
value = np.nonzero(index_all==i)
sseNotSplit = sum(self._clusterAssment[value[0],1])
if (sseSplit + sseNotSplit) < lowestSSE:
bestCentToSplit = i
bestNewCents = centroidMat
bestClustAss = splitClustAss.copy()
lowestSSE = sseSplit + sseNotSplit
#该族被划分成两个子族后,其中一个子族的索引变为原族的索引
#另一个子族的索引变为len(centList),然后存入centList
bestClustAss[np.nonzero(bestClustAss[:,0]==1)[0],0]=len(centList)
bestClustAss[np.nonzero(bestClustAss[:,0]==0)[0],0]=bestCentToSplit
centList[bestCentToSplit] = bestNewCents[0,:].tolist()
centList.append(bestNewCents[1,:].tolist())
self._clusterAssment[np.nonzero(self._clusterAssment[:,0] == \
bestCentToSplit)[0],:]= bestClustAss
self._labels = self._clusterAssment[:,0]
self._sse = sum(self._clusterAssment[:,1])
self._centroids = np.asarray(centList)
def predict(self, X):#根据聚类结果,预测新输入数据所属的族
#类型检查
if not isinstance(X,np.ndarray):
try:
X = np.asarray(X)
except:
raise TypeError("numpy.ndarray required for X")
m = X.shape[0]#m代表样本数量
preds = np.empty((m,))
for i in range(m):#将每个样本点分配到离它最近的质心所属的族
minDist = np.inf
for j in range(self._k):
distJI = self._calEDist(self._centroids[j,:],X[i,:])
if distJI < minDist:
minDist = distJI
preds[i] = j
return preds