Airflow 核心原理分析

1. airflow架构

  • scheduler,它处理触发计划的工作流,并将任务提交给executor运行。

  • executor,处理正在运行的任务。在默认的 Airflow 安装中,它运行在scheduler中,但大多数适合生产的executor实际上将任务执行推送给workers。

  • webserver,它提供了一个方便的用户界面来检查、触发和调试 DAG 和任务的行为。

  • DAG Directory,由scheduler和executor(以及executor所有的worker)读取

  • Metadata Database,供scheduler, executor和webserver用来存储状态。

2. Scheduler

2.1 基础概念

  • JOB:最上层的工作。分为 SchedulerJob、BackfillJob 和 LocalTaskJob。SchedulerJob 由 Scheduler 创建,BackfillJob 由 Backfill 创建,LocalTaskJob 由前面两种 Job 创建。
  • DAG:有向无环图,用来表示工作流。
  • DAG Run:工作流实例,表示某个工作流的一次运行(状态)。
  • Task:任务,工作流的基本组成部分。
  • TaskInstance:任务实例,表示某个任务的一次运行(状态)。

2.2 heartbeat 

在airflow中,heartbeat是相当重要的一个概念,heartbeat不能简单的理解成“心跳”,heartbeat是airflow中各个组件协同、通信、交互、工作的一种方式,在shceduler中,有下面几种重要的heatbeat

heartbeat作用
scheduler -> executor触发运行的task,并更新task状态
scheduler -> DagFileProcessorAgent检测DagFileProcessorManager的存活状态,并处理manager返回的消息
scheduler -> scheduler检查scheduler是否存在问题,更新schedulerjob数据库的信息

2.3 功能逻辑

调度器实际上就是一个 airflow.jobs.SchedulerJob 实例 job 持续运行 run 方法。job.run() 在开始时将自身的信息加入到 job 表中,并维护状态和心跳,预期能够正常结束,将结束时间也更新到表中。 但是实际上往往因为异常中断,导致结束时间为空。不管是如何进行的退出,SchedulerJob 退出时会关闭所有子进程。

这里简单介绍下 Scheduler 的功能逻辑:

  • 遍历 dags 路径下的所有 dag 文件, 启动一定数量的进程(进程池),并且给每个进程指派一个 dag 文件。 每个 DagFileProcessor 解析分配给它的dag文件,并根据解析结果在 DB中创建 DagRuns 和 TaskInstance。
  • 在 scheduler_loop 中,检查与活动 DagRun 关联的 TaskInstance 的状态,解析 TaskInstance 之间的任何依赖,标识需要被执行的 TaskInstance,然后将它们添加至 executor 队列,将新排列的 TaskInstance 状态更新为QUEUED状态。
  • 每个可用的 executor 从队列中取一个 TaskInstance,然后开始执行它,将此 TaskInstance 的数据库记录更新为SCHEDULED
  • 当一个 TaskInstance 完成运行,关联的 executor 就会报告到队列并更新数据库中的 TaskInstance 的状态(例如“完成”、“失败”等)。
  • 一旦所有的dag处理完毕后,就会进行下一轮循环处理。这里还有一个细节就是上一轮的某个dag的处理时间可能很长,导致到下一轮处理的时候这个dag还没有处理完成。 Airflow 的处理逻辑是在这一轮不为这个dag创建进程,这样就不会阻塞进程去处理其余dag
  • preview

2.4 启动过程

scheduler在启动时,通过airflow/__main__.py入口方法传入参数"scheduler"启动,启动时会创建Job对象,Job的概念在上面有描述,开始执行job.run()方法后进入核心逻辑,核心步骤如下

  1. 打印关键日志:"Starting the scheduler",表示开始启动
  2. 启动DagFileProcessorAgent
    1. 扫描文件,导入模块
    2. dag定义文件中的搜集dag
    3. 创建dagrun
    4. 创建任务实例
  3. 进入核心的_run_scheduler_loop方法,循环调用,主要功能如下
    1. .通过 DagFileProcessorAgent 获取 DAG 解析结果
    2. 查找和排队可执行任务
      1. 更改数据库中的TaskInstance状态
      2. 把任务放在executor中排队
    3. 心跳检测executor
      1. 异步执行executor中排队的任务
      2. 同步运行任务的状态
  4. 执行_do_scheduling,dag级别的调度的决策,TaskInstance状态管理,task同步到executor等功能,后面会详解
  5. 开启心跳检查 
    1. Executor心跳
    2. DagFileProcessorAgent心跳
    3. Scheduler心跳

3. Executor

Airflow本身是一个综合平台,它兼容多种组件,所以在使用的时候有多种方案可以选择。比如最关键的执行器就有四种选择:

  • SequentialExecutor:单进程顺序执行任务,默认执行器,通常只用于测试
  • LocalExecutor:多进程本地执行任务
  • CeleryExecutor:分布式调度,生产常用
  • DaskExecutor :动态任务调度,主要用于数据分析

在当前项目使用CeleryExecutor作为执行器。

celery是一个分布式调度框架,其本身无队列功能,需要使用第三方组件,比如redis或者rabbitmq

3.1 CeleryExecutor

3.1.1 架构

  • Worker- 执行分配的任务

  • Scheduler——负责将必要的任务添加到队列中

  • Web Server- HTTP 服务器提供对 DAG/任务状态信息的访问

  • Database- 包含有关任务、DAG、变量、连接等状态的信息。

  • Celery - 队列机制

Celery 的队列由两个部分组成:

  • Broker - 存储要执行的命令

  • Result backend - 存储已完成命令的状态

上图组件在很多地方相互通信

  • [1] Web server --> Workers - 拉取任务执行日志

  • [2] Web server --> DAG files - 解析展示DAG结构

  • [3] Web server --> Database - 拉取任务状态

  • [4] Workers --> DAG files - 解析DAG结构并执行task

  • [5] Workers --> Database - 获取和存储有关连接配置、变量

  • [6] Workers --> Celery's result backend - 存储task运行状态

  • [7] Workers --> Celery's broker - 存储要执行的命令

  • [8] Scheduler --> DAG files - 解析DAG结构并执行task

  • [9] Scheduler --> Database - 存储 dagrun和相关task

  • [10] Scheduler --> Celery's result backend - 获取已经执行完成的task信息

  • [11] Scheduler --> Celery's broker - put要执行的命令

3.1.2 任务执行流程​

​​

初始状态有两个进程运行:

  • SchedulerProcess - 处理tasks并使用 CeleryExecutor 运行

  • WorkerProcess - 观察队列等待新的tasks出现

两个抽象的数据库,使用celery:

  • QueueBroker

  • ResultBackend

在运行task过程中,创建了两个进程:

  • LocalTaskJobProcess - 它的逻辑由 LocalTask​​Job 描述,同时监控RawTaskProcess的状态,新的进程将由TaskRunner启动.

  • RawTaskProcess - 它用来处理用户实际的代码,比如用户执行的一行shell


[1] SchedulerProcess处理任务,当它发现需要完成的任务时,将其发送到QueueBroker
[2] SchedulerProcess也会周期性的查询ResultBackend以获取任务的状态。
[3] QueueBroker当它意识到有新任务产生时,会将有关它的信息发送到 WorkerProcess 
[4] WorkerProcess将单个任务分配给一个WorkerChildProcess
[5] WorkerChildProcess执行适当的任务处理功能 - 关键方法:execute_command()。并创建个新的进程 - LocalTask​​JobProcess
[6] LocalTask​​JobProcess 逻辑由LocalTaskJob类描述。它使用 TaskRunner 启动的新进程。
[7] RowTaskProcess 执行用户实际的代码,这一步是最底层真正执行task的操作
[8][9] Process RawTaskProcessLocalTask​​JobProcess在完成task后停止。
[10] WorkerChildProcess通知主进程-WorkerProcess任务结束以及后续任务的可用性。
[11] WorkerProcess将状态信息保存在ResultBackend 中
[12] 当SchedulerProcess再次询问ResultBackend状态时,将会获取到任务状态的信息。

4. Scheduler源码分析

_run_scheduler_loop

调度的核心逻辑在airflow.jobs.scheduler_job.SchedulerJob._run_scheduler_loop(),从方法名可以知道是一个循环,基础逻辑是从数据库找出需要调度的dag,创建dagrun,创建TaskInstance,管理生命周期状态等等功能。我们一步步深入研究它内部的最主要逻辑

贴一下代码

 def _run_scheduler_loop(self) -> None:
        """
        The actual scheduler loop. The main steps in the loop are:
            #. Harvest DAG parsing results through DagFileProcessorAgent
            #. Find and queue executable tasks
                #. Change task instance state in DB
                #. Queue tasks in executor
            #. Heartbeat executor
                #. Execute queued tasks in executor asynchronously
                #. Sync on the states of running tasks

        Following is a graphic representation of these steps.

        .. image:: ../docs/apache-airflow/img/scheduler_loop.jpg

        :rtype: None
        """
        if not self.processor_agent:
            raise ValueError("Processor agent is not started.")
        is_unit_test: bool = conf.getboolean('core', 'unit_test_mode')
        # 1.创建timer,scheduler自身的定时器,与用户代码无关
        timers = EventScheduler()

        # Check on start up, then every configured interval
        self.adopt_or_reset_orphaned_tasks()

        timers.call_regular_interval(
            conf.getfloat('scheduler', 'orphaned_tasks_check_interval', fallback=300.0),
            self.adopt_or_reset_orphaned_tasks,
        )

        timers.call_regular_interval(
            conf.getfloat('scheduler', 'pool_metrics_interval', fallback=5.0),
            self._emit_pool_metrics,
        )

        timers.call_regular_interval(
            conf.getfloat('scheduler', 'clean_tis_without_dagrun_interval', fallback=15.0),
            self._clean_tis_without_dagrun,
        )

        for loop_count in itertools.count(start=1):
            with Stats.timer() as timer:

                if self.using_sqlite:
                    self.processor_agent.run_single_parsing_loop()
                    # For the sqlite case w/ 1 thread, wait until the processor
                    # is finished to avoid concurrent access to the DB.
                    self.log.debug("Waiting for processors to finish since we're using sqlite")
                    self.processor_agent.wait_until_finished()

                with create_session() as session:
					# 2.执行调度dag相关的关键步骤,返回queued状态的taskinstance个数
                    num_queued_tis = self._do_scheduling(session)
                    # 3.executor通过heartbeat实际触发执行command的步骤
                    self.executor.heartbeat()
                    session.expunge_all()
                    num_finished_events = self._process_executor_events(session=session)
                # 4.检测DagFileProcessorManager的存活状态,并处理manager返回的消息
                 self.processor_agent.heartbeat()

                # Heartbeat the scheduler periodically
                # 5.通过heartbeat更新job的条目,检查时间戳判断scheduler是否有问题
                 self.heartbeat(only_if_necessary=True)

                # Run any pending timed events
                next_event = timers.run(blocking=False)
                self.log.debug("Next timed event is in %f", next_event)

            self.log.debug("Ran scheduling loop in %.2f seconds", timer.duration)

            if not is_unit_test and not num_queued_tis and not num_finished_events:
                # If the scheduler is doing things, don't sleep. This means when there is work to do, the
                # scheduler will run "as quick as possible", but when it's stopped, it can sleep, dropping CPU
                # usage when "idle"
                time.sleep(min(self._processor_poll_interval, next_event))

            if loop_count >= self.num_runs > 0:
                self.log.info(
                    "Exiting scheduler loop as requested number of runs (%d - got to %d) has been reached",
                    self.num_runs,
                    loop_count,
                )
                break
            if self.processor_agent.done:
                self.log.info(
                    "Exiting scheduler loop as requested DAG parse count (%d) has been reached after %d"
                    " scheduler loops",
                    self.num_times_parse_dags,
                    loop_count,
                )
                break
  1. 创建timer,scheduler自身的定时器,与用户代码无关
  2. 执行调度dag相关的关键步骤,返回queued状态的taskinstance个数
  3. executor通过heartbeat实际触发执行command的步骤
  4. 检测DagFileProcessorManager的存活状态,并处理manager返回的消息
  5. 通过heartbeat更新scheduler在数据库的信息,检查时间戳判断scheduler是否有问题

_do_scheduling

上面代码中,_do_scheduling()是_run_scheduler_loop()的核心调用方法,(对于Dag,DagRun,Task,TaskInstance等概念已在前面说明,需了解清楚)。所有数据库的操作,都由session对象维护。描述中以airflow自带到demo example_bash_operator 举例说明,DAG图如下

核心逻辑功能如下:

  1. 为需要被调度的Dag创建DagRun,表示当前Dag需要被执行一次
  2. 更新数据库中Dag的状态,把queued状态的Dag改成running状态
  3. 检查DAG的正确性,包含db是否存在、是否序列化,以决定当前DagRun是否可以被执行
  4. 修改数据库数据,把Task的状态更改为Scheduled状态
  5. 更新数据库后发送回调给DagFileProcessor,以确保context运行时是最新的
  6. 检查Executor中slot是否有剩余可用,计算公式为:slots_available = parallelism - running - queued_tasks,如果不可用,直接退出,甚至不会有重试,会打印log:”Executor full, skipping critical section“
  7. 第6步中检查发现Executor中slot有剩余可用时,会把数据库中标记为scheduled状态的task标记为queued状态,其中涉及3个细节
    1. 在没有超过max_active_runs或pool的限制的情况下会根据TaskInstance的优先级决定执行顺序
      1. 根据池限制、dag 并发性、执行程序状态和优先级查找准备好执行的TaskInstance
      2. log中会打印”xx tasks up for execution“,如下图,也打印了所有TaskInstance到名称,此时真正物理到task还未被真正执行
      3. 紧接着会经过一系列的资源检查,如pool、dag并发数、task并发数,确保TaskInstance能被调度,检查成功后,也会更新metrics如:pool.starving_tasks、scheduler.tasks.starving、scheduler.tasks.running、scheduler.tasks.executable 
    2. 更改TaskInstance的状态,把数据库里面scheduled状态更改为queued,返回要执行的TaskInstance个数
    3. 将TaskInstance放入Executor中
    4. 其余task级别的逻辑和状态维护均在executor中维护 

5. 状态转移追踪

5.1 任务状态

DAG级别状态:

状态释义
QUEUED已排队
SUCCESS成功
RUNNING运行中
FAILED

失败

TASK级别状态:

状态释义
NONE
REMOVED已移除
RUNNING运行中
SCHEDULED已调度
QUEUED已排队
SHUTDOWN关闭
UP_FOR_RETRY等待重试
UP_FOR_RESCHEDULE等待被重新调度
UPSTREAM_FAILED上游失败
SKIPPED已跳过
SENSING-

5.2 状态转移

以airlow自带的demo example_bash_operator为例,描述dag的生命周期,状态类别可参考上面列表,状态分为DagRun级别和TaskInstance级别

查询DagRun和TaskInstance的状态有两种方法:

  1. 查询airflow的元数据库,分别对应dag_runtask_instance
  2. 查询airflow的webui,可以清晰的看到DagRun和TaskInstance的当前状态

step1

手动运行dag或定时触发

上一次状态当前状态状态关键日志查询状态sql(airflow元数据库)
DagRun
QUEUED
select * from dag_run where dag_id="example_bash_operator" and state="queued"
TaskInstance
NONE
select * from task_instance where dag_id="example_bash_operator" state=null

step2

上一次状态当前状态状态关键日志查询状态sql(airflow元数据库)
DagRun
QUEUED
RUNNING
select * from dag_run where dag_id="example_bash_operator" and state="running"
TaskInstance
NONE
SCHEDULED
select * from task_instance where dag_id="example_bash_operator" and state="scheduled"

step3

上一次状态当前状态状态关键日志查询状态sql(airflow元数据库)
DagRun
RUNNING
RUNNING
select * from dag_run where dag_id="example_bash_operator" and state="running"
TaskInstance
SCHEDULED
QUEUED
{scheduler_job.py:517} INFO - Sending TaskInstanceKey(dag_id='example_bash_operator', task_id='runme_0', execution_date=datetime.datetime(2021, 9, 13, 12, 42, 38, 886807, tzinfo=Timezone('UTC')), try_number=1) to executor with priority 3 and queue defaultselect * from task_instance where dag_id="example_bash_operator" and state="queued"

step4

上一次状态当前状态状态关键日志查询状态sql(airflow元数据库)
DagRun
RUNNING
RUNNING
select * from dag_run where dag_id="example_bash_operator" and state="running"
TaskInstance
QUEUED
RUNNING
[2021-09-13 23:21:28,217] {standard_task_runner.py:52} INFO - Started process 5894 to run task
[2021-09-13 23:23:32,590] {standard_task_runner.py:76} INFO - Running: ['airflow', 'tasks'......
[2021-09-13 23:23:33,772] {standard_task_runner.py:77} INFO - Job 448: Subtask runme_0
select * from task_instance where dag_id="example_bash_operator" and state="running"

step5

上一次状态当前状态状态关键日志查询状态sql(airflow元数据库)
DagRun
RUNNING
SUCCESS
[2021-09-14 09:25:45,976] {dagrun.py:434} INFO - Marking run <DagRun example_bash_operator @ 2021-09-14 01:25:39.909845+00:00: manual__2021-09-14T01:25:39.909845+00:00, externally triggered: True> successfulselect * from dag_run where dag_id="example_bash_operator" and state="success"
TaskInstance
RUNNING
SUCCESS
[2021-09-14 09:25:43,387] {subprocess.py:82} INFO - Command exited with return code 0
[2021-09-14 09:25:43,413] {taskinstance.py:1218} INFO - Marking task as SUCCESS. dag_id=example_bash_operator, task_id=runme_0......
select * from task_instance where dag_id="example_bash_operator" and state="success"

6. 日志记录和监控架构

logging配置参考:Logging for Tasks — Airflow Documentation 

metric信息参考:Metrics — Airflow Documentation

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值