【动态规划】之01背包问题(难度:2星)

#include <stdio.h>

/**
 * 原题:
 * 一个贼在偷窃一家商店时发现了N件物品,其中第i件值v[i]元,重w[i]磅。
 * 他希望偷走的东西总和越值钱越好,但是他的背包只能放下W磅。
 * 请求解如何放能偷走最大价值的物品,这里v[i]w[i]W都是整数
 */
#define MAX(x,y) (x>y?x:y)
#define N 5
#define W 11

static int v[N] = {5,3,4,5,7};
static int w[N] = {2,3,4,6,8};

/**
 * 思路如下
 * 设子问题为:从第i件物品开始选择,当前背包剩余可容量为j,求出在此条件下所能获得的最大价值max_v
 * 找出边界:显然i=N,max_v=0(i=N,说明已经没有物品可选了), j=0,max_v=0(可容量为0,自然没有物品可选,价值自然为0)
 */
//解法1:递归
int solve_1(int i, int j){
    if (j == 0 || i == N)
        return 0;
    //容量不够时, 只能选择尝试下一件物品
    if (w[i] > j)
        return solve_1(i+1, j);
    //容量足够时, 在选择当前物品和尝试下一件物品之中选择价值最高的
    return MAX(solve_1(i+1,j-w[i]) + v[i], solve_1(i+1, j));
}

//解法2:递归+记忆数组的dp
static int memo[N+1][W+1];
int solve_2(int i, int j){
    if (j == 0 || i == N)
        return memo[i][j] = 0;
    if (memo[i][j] > -1)
        return memo[i][j];
    //容量不够时, 只能选择尝试下一件物品
    if (w[i] > j)
        return memo[i][j] = solve_2(i+1, j);
    //容量足够时, 在选择当前物品和尝试下一件物品之中选择价值最高的
    return memo[i][j] = MAX(solve_2(i+1,j-w[i]) + v[i], solve_2(i+1, j));
}

//解法3:递推形
static int max_v[N+1][W+1];
int solve_3(){
    for (int i = N-1; i >= 0; --i) {
        for (int j = 1; j <= W; ++j) {
            if (w[i] > j)
                max_v[i][j] = max_v[i+1][j];
            else
                max_v[i][j] = MAX(max_v[i+1][j-w[i]]+v[i], max_v[i+1][j]);
        }
    }
    return max_v[0][W];
}



int main() {
    printf("solve_1:%d\n", solve_1(0, W));

    for (int i = 0; i <= N; ++i) {
        for (int j = 0; j <= W; ++j) {
            memo[i][j] = -1;
        }
    }
    printf("solve_2:%d\n", solve_2(0, W));
//    for (int i = 0; i <= N; ++i) {
//        for (int j = 0; j <= W; ++j) {
//            printf("%d\t", memo[i][j]);
//        }
//        printf("\n");
//    }

    printf("solve_3:%d\n", solve_3());
//    for (int i = 0; i <= N; ++i) {
//        for (int j = 0; j <= W; ++j) {
//            printf("%d\t", max_v[i][j]);
//        }
//        printf("\n");
//    }


    return 0;
}

运行结果:

solve_1:13
solve_2:13
solve_3:13



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值