文章目录
链接
https://github.com/DAMO-NLP-SG/Video-LLaMA
主要贡献
- 能够捕捉到一小小短时间(temporal)里视觉的变化
- 使用了Q-former 去做视频上的encoding,通过 视频转文字的方式去做理解 - 符合人类对视频理解的套路,即声音+视觉 信号
- 套用了Facebook的 imagebind 给 LLM 做多模态的embedding的buff, 不然介于语音数据的稀有,如果没有 imagebind, 那么就不太能将语音的信息用进去
模型

整个模型,蓝色的blocks都是可以被拿来直接用的,橙色部分是一定要经过训练,以促成Llama video 模型正常联通使用的。
视觉和语音部分都大同小异:
相同点:
- 都使用了Qformer,并且通过其中learnable的 position 捕捉 temporal的信息
- 都用到了pretrained 的模型作为数据的enc
Video-LLaMA利用Q-former进行视频编码,结合预训练的Blip和Facebook的imagebind进行多模态理解。模型通过捕获temporal信息和使用position embedding,适应了视频中视觉和语音的变化。训练分为图像caption数据的粗训和高质量数据的精训阶段。在实际应用中,建议使用较长视频以避免重复帧的影响。此外,代码中使用了Blip和Clip的组件,以获取丰富的图像嵌入。
订阅专栏 解锁全文
762

被折叠的 条评论
为什么被折叠?



