视频大语言模型调研论文《Video-LLaMA: An Instruction-tuned Audio-Visual Language Model for Video Understanding》解读

本文介绍了阿里达摩院的Video-LLaMA,一个针对视频理解的多模态大语言模型,通过创新结构和训练方法,如VideoQ-former和AudioQ-former,增强了模型在捕捉视觉时序变化和整合音频-视觉信号方面的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是关于论文《Video-LLaMA: An Instruction-tuned Audio-Visual Language Model for Video Understanding》的简要介绍。Video-LLaMA是阿里达摩院的一个多模态大语言模型产品,可以理解视频中视觉和听觉内容。和很多多模态大语言模型类似,模型结构和训练方式中规中矩,但是针对视频这种信息量丰富的数据类型,作者提出了一些创意。

有关本专栏的更多内容,请参考大语言模型文献调研专栏目录

模型结构:与以往仅补充LLMs处理视觉或音频信号的作品不同,Video-LLaMA通过应对两个挑战实现视频理解:

(1)捕捉视觉场景中的时序变化:作者提出了Video Q-former,将一个预训练的图像编码器组装到视频编码器中,并引入视频到文本生成任务来学习视频-语言对应关系。

(2)整合音频-视觉信号。利用通用嵌入模型ImageBind作为预训练音频编码器,并在ImageBind之上引入一个Audio Q-former,为LLM模块学习合理的听觉查询嵌入。

训练方式:和很多多模态大语言模型一样,Video-LLaMA冻结预训练视觉和音频编码器,冻结的LLMs,进行跨模态训练。为了将视觉和音频编码器的输出与LLM的嵌入空间对齐,作者首先在海量视频/图像标题对上训练Video-LLaMA,然后使用质量更高但数量适中的视觉指导数据集模型。

1. 论文的基本信息

1.1 论文资源

论文链接:https://arxiv.org/pdf/2306.02858.pdf

代码链接:https://github.com/DAMO-NLP-SG/Video-LLaMA

展示样例:https://www.youtube.com/watch?v=RDNYs3Rswhc&feature=youtu.be

论文引用:

@article{zhang2023video,
  title={Video-llama: An instruction-tuned audio-visual language model for video understanding},
  author={Zhang, Hang and Li, Xin and Bing, Lidong},
  journal={arXiv preprint arXiv:2306.02858},
  year={2023}
}

1.2 任务介绍和动机

大型语言模型(LLMs)已经表现出了出色的理解和遵循用户意图和指令的能力。研究人员通常将用户请求和LLMs的响应都以文本形式表达,但是,在许多应用场景下,仅限于文本的人机交互并不足够,真实世界的信息通常是多模态的。

现有工作的不足。为了进一步探索LLMs的潜力,许多研究人员尝试赋予LLMs理解多模态内容的能力。包括使用大量交织

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值