Liver Segmentation in CT based on ResUNet with 3D Probabilistic and Geometric Post Process

一、摘要
本文提出了使用具有3D概率和几何后期处理功能的ResUNet的新型肝分割框架。 我们的语义分割模型ResUNet在U-Net的上采样和下采样部分添加了残差单元和批处理规范化层,以构建更深的网络。 为了快速收敛,我们提出了一种新的损失函数DCE,该函数由Dice损失和交叉熵损失线性组合。 我们使用连续的几个CT图像作为训练和测试的输入,以探索更多的上下文信息。 基于ResUNet的初始分割,通过探索2D相邻区域和3D体积信息,使用完全连接的3D条件随机字段来细化分割结果。 最后,使用3D连接的组件分析来保留一些大型组件并减少分割噪声。 在公共数据集LiTS上的实验结果表明,我们提出的框架实现了肝分割的最新技术水平。
二、重点摘录

  1. We firstly adjust the original Hounsfield values of each image in CT sequence by remaining the range between -200 HU and 200 HU, which can get a clearer organ to distinguish and reduce image noise.
  2. We also use histogram equalization to enhance the contrast of the organ boundaries.
  3. In order to explore the local information between pixels and images, we use fully connected 3D conditional random field 3D_CRF as a post processing step.
    三、总结
    分割完后期对分割边缘的处理可以学习一下。
    【参考博文】CRF对分割图像进行优化处理
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值