论文笔记A Liver Segmentation Method Based on the Fusion of VNet and WGAN

 一种基于VNet和WGAN融合的肝脏分割方法 

Computational and Mathematical Methods in Medicine   2021 

       虽然基于二维卷积神经网络的肝脏分割方法取得了不错的效果,但仍然存在层间信息的缺乏,在一定程度上造成分割精度的严重损失。同时,在2D分割网络中更有效地利用高级和低级特征是一个具有挑战性的问题。因此,设计并实现了一个2.5D卷积神经网络 VNet-WGAN,以提高肝脏分割的准确性。

       传统的肝脏分割方法,包括主动轮廓模型、聚类、水平集、图切割方法和区域生长方法,提取灰度、形状,医学图像的结构和纹理信息来手动分割肝脏。这些方法的效率仅限于大型数据库。但是,使用这些方法对数据进行预处理非常耗时。

       而深度学习在通用性和效率方面优于传统的肝脏分割方法。在深度学习网络中,FCN和UNet是医学图像分割方法中使用的典型分割模型。随后,从这两个网络衍生出许多网络,例如:添加了均值偏移聚类算法以减少肝脏的过度分割;为了进一步提高图像增强的准确性,提出了一种基于统计阈值的图像增强技术,该技术利用累积分布函数(CDF)排除非肝脏区域;为了提高训练和推理速度,有论文在最后一层将亚像素卷积与双线性插值相结合。

       很多模型在医学图像处理中可以得到相对准确的分割结果,但数据采集和标注的困难在很大程度上阻碍了足够大数据集的构建。为了克服这个问题,传统的图像增强技术(例如几何变换-可以生成新的数据)然而,它们在检测医学数据中的生物变化方面并不可靠。2014年,Goodfellow等人提出生成对抗网络(GAN)模型。它使用无监督训练方法通过对抗学习进行训练,目的是估计数据样本的潜在分布并生成新的数据样本。GAN 还可以实现不同模态图像之间的转换。由于GAN不需要提前知道理论分布,可以自动推断出真实的数据集,进一步扩展了数据的规模和多样性,为数据扩展提供了新的方法,缓解了智能诊断的数据需求问题

Contributions

1. 通过将切片及其上下相邻切片堆叠作为网络输入,将中心切片对应的分割图作为输出,使用两个串联的卷积核来充分提取层内和层间信息。在保持较高的分割精度的同时,空间特性可以降低内存占用率和计算量;

2. 为充分利用网络的高层和低层特征,在VNet网络的long-skip连接结构中加入链式残差池化模块CRP,获取更丰富的语义信息,有效提高肝脏分割的准确率;

3. 在基本的WGAN生成器网络中引入边界损失函数,以弥补Dice损失函数对边缘像素精度考虑的不足。利用边界和Dice加权融合的复合损失函数,分别从区域和边界增强模型的分割能力。

Methodology of This Article
1. GAN是由生成模型G和判别模型D组成的生成对抗网络,可以表示为G和D之间的极小极大博弈问题。G学习给定噪声的分布(如均匀分布和正态分布)和合成它们。D区分训练样本来自真实样本还是生成样本。 GAN使用对抗学习的概念来获得更好的生成结果。Adversary是指当判别模型D的判别能力越来越强时,生成模型G生成的图像会越来越真实,最终达到一个平衡。

2. Luc等人首次将GAN应用于图像分割。通常语义分割结果往往需要使用CRF和其他后处理技术进行改进,以获得更逼真的轮廓。因此,GAN 本身具有出色的生成能力,可用于改进结果。然而,GAN 也存在训练不稳定、梯度消失、模式崩溃等缺点。基于这些问题,已经衍生出许多流行的架构,包括条件 GAN(CGAN)、DCGAN(深度卷积GAN)和InfoGAN(信息最大化GAN)。一定程度上解决了GAN的弊端。但是,在解决训练过程中的稳定性问题方面仍然存在一些不足。WGAN的出现解决了 GAN 训练的不稳定问题,同时提供了一个可靠的指标,即 Wasserstein 距离用于训练。与JS(Jensen-Shannon)和KL(Kullback-Leibler)相比,Wasserstein距离可以自然地衡量离散分布和连续分布之间的距离,完全避免了GAN中常见的训练稳定和梯度消失的问题。

3. VNet网络结构包括一个编码器和一个解码器,继承了UNet的跳跃连接,以弥补特征提取过程中的信息丢失。此外,VNet使用ResNet的短路连接机制,将每个阶段的输入和输出相加,以学习残差函数;同时用Dice损失函数代替交叉熵损失函数,提高目标分割区域的灵敏度。虽然 VNet 网络为处理 3D 医学图像提供了参考,但医学图像数据大多较小,GPU 内存有限,这仍然会导致网络在训练过程中过度拟合和不稳定,尤其是对于3D数据。

Methods
       由于WGAN模型完全解决了GAN的训练不稳定性问题,因此,在训练过程中,不再需要仔细平衡生成器和判别器的训练水平。由于这一优良特性,采用WGAN作为模型的基本结构,并设计了改进的VNet作为肝脏分割的生成器。判别网络是一个简单的CNN网络,它判断输入图像是生成器生成的“假图像”(分割的结果)还是“真实图像”(注释图像)。


1.Generator:网络的输入是相关切片及其相邻的上下两个切片,中间切片作为输出结果。在训练过程中,使用大小为 1×3×3和3×1×1的卷积核来提取层内和层间信息。这种卷积方法类似于可分离深度卷积,无需3D CNN生成的大量计算即可提取医学数据的3D特征,并缩短了训练时间。在改进的卷积模块中,VNet的跳跃连接部分增加了两个链式残差池化模块CRP,具有池化和卷积操作,以更有效地利用高级和低级特征信息。链式池化操作可以显着增加感受野,因为可以从高分辨率特征图中提取边缘信息,并且可以通过低分辨率提取全局信息。因此,像素的分类精度进一步提高。


       同时,残差结构有利于梯度的反向传播。该模块包括两个池化卷积块、两个残差结构、一个激活函数、批量归一化和dropout层(解决某些特征只有在其他特征存在时才有用的场景,也可以增强神经网络的鲁棒性,有效缓解过拟合问题,并在一定程度上实现正则化)。网络使用1×5×5的卷积核,保证池化后的图像尺寸与输入图像尺寸一致;池化之后是卷积操作,然后,输出结果输入到下一个池化卷积模块;最后,将两个特征图合并。在网络训练过程中,网络模型越复杂,需要学习的特征越多,训练时间越长,容易导致过拟合问题。因此,本研究对现有的网络模型进行了微调:具体方法是添加批量归一化(BN)以在每次revolution后对具有不同分布的数据进行归一化。因此,每一层数据都可以转换成相同的分布,网络模型的最优结果更容易收敛,从而在很大程度上加快了网络模型的训练速度

2.Discriminator:判别器的输入是生成器的输出结果和原始图像的注释图像,它们首先融合,然后输入到CNN网络。最后,第二个分类器输出判别器的输出信号。判别器包括一组条件池化块、四组卷积块、两个全连接层和最后两个分类层。一组条件卷积池化块包含两个卷积层和一个最大池化层。每个卷积层由卷积核、归一化和激活函数组成。

3.Loss Function:本文方法的损失函数由生成器和判别器的损失函数组成。Dice loss更多地关注区域的相似性,而忽略了空间信息(例如远离标签区域的错误分割部分)因此,为了最小化分割边界和标签边界之间的距离,提出Dice loss和边界损失的合成函数:在这个合成函数中,边界损失通过边缘匹配度来控制网络损失的程度,合成函数仅评估边界上的像素,当边界上的像素与ground truth的边界完全一致时,边界损失值等于0,而当边界与真实结果不重合时,则通过其与边界的距离来评估。本研究的实验结果表明,合成损失函数是Dice损失和边界损失的加权融合。其中,一个控制区域,一个控制边界,可以实现更好的分割性能。在实践中,Dice损失分数在训练开始时非常高。随着训练的进行,边界损失的比例增加,这说明边界的准确性在训练的后期得到了更多的关注,并且正在处理增强的边界细节信息。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值