折半查找法的两种实现
折半查找法:
在有序表中,把待查找数据值与查找范围的中间元素值进行比较,会有三种情况出现:
1) 待查找数据值与中间元素值正好相等,则放回中间元素值的索引。
2) 待查找数据值比中间元素值小,则以整个查找范围的前半部分作为新的查找范围,执行1),直到找到相等的值。
3) 待查找数据值比中间元素值大,则以整个查找范围的后半部分作为新的查找范围,执行1),直到找到相等的值
4) 如果最后找不到相等的值,则返回错误提示信息。
按照二叉树来理解:中间值为二叉树的根,前半部分为左子树,后半部分为右子树。折半查找法的查找次数正好为该值所在的层数。等概率情况下,约为
log2(n+1)-1
- int bin_search(int x,int a[],int n){
- int low,high,mid;
- low = 0;
- high = n - 1;
- while(low <= high){
- mid = (low + high) / 2;
- if(x < a[mid]){
- high = mid - 1;
- }
- else if(x > a[mid]){
- low = mid + 1;
- }
- else{
- return mid;
- }
- }
- return -1;
- }
- //递归法
- int IterBiSearch(int data[], const int x, int beg, int last)
- {
- int mid = -1;
- mid = (beg + last) / 2;
- if (x == data[mid])
- {
- return mid;
- }
- else if (x < data[mid])
- {
- return IterBiSearch(data, x, beg, mid - 1);
- }
- else if (x > data[mid])
- {
- return IterBiSearch(data, x, mid + 1, last);
- }
- return -1;
- }
- //主函数
- int _tmain(int argc, _TCHAR* argv[])
- {
- int data1[60] = {0};
- int no2search = 45;
- cout << "The array is : " << endl;
- int siz = sizeof(data1)/sizeof(int);
- for (int i = 0; i < siz; i++)
- {
- data1[i] = i;
- cout << data1[i] << " ";
- }
- cout << endl;
- int index = -1;
- //index = BiSearch(data1, no2search, 0, siz);
- index = IterBiSearch(data1, no2search, 0, siz);
- cout << "Index of " << no2search << " is " << index << endl;
- getchar();
- return 0;
- }
*****************************************************************************************************
3:红黑树是每个节点都带有颜色属性的二叉查找树,颜色或红色或黑色。在二叉查找树强制一般要求以外,对于任何有效的红黑树我们增加了如下的额外要求:
性质1. 节点是红色或黑色。
性质2. 根节点是黑色。
性质3 每个叶节点(NIL节点,空节点)是黑色的。
性质4 每个红色节点的两个子节点都是黑色。(从每个叶子到根的所有路径上不能有两个连续的红色节点)
性质5. 从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点。
这些约束强制了红黑树的关键性质: 从根到叶子的最长的可能路径不多于最短的可能路径的两倍长。结果是这个树大致上是平衡的。因为操作比如插入、删除和查找某个值的最坏情况时间都要求与树的高度成比例,这个在高度上的理论上限允许红黑树在最坏情况下都是高效的,而不同于普通的二叉查找树。
红黑树和AVL树一样都对插入时间、删除时间和查找时间提供了最好可能的最坏情况担保
红黑树在很多地方都有应用。在C++ STL中,很多部分(包括set, multiset, map, multimap)应用了红黑树的变体
--------------------------教科书:折半算法