There are a row of n houses, each house can be painted with one of the three colors: red, blue or green. The cost of painting each house with a certain color is different. You have to paint all the houses such that no two adjacent houses have the same color.
The cost of painting each house with a certain color is represented by a n x 3
cost matrix. For example, costs[0][0]
is the cost of painting house 0 with color red; costs[1][2]
is the cost of painting house 1 with color green, and so on... Find the minimum cost to paint all houses.
Note:
All costs are positive integers.
思路:dp[i][3], 代表到目前为止,i的index的涂dp[i][0] red, dp[i][1] blue, dp[i][2] green的颜色的cost,那么就是由前面的另外两个颜色的最小值+ costs[i][j]得到;
class Solution {
public int minCost(int[][] costs) {
if(costs == null || costs.length == 0 || costs[0].length == 0) {
return 0;
}
int n = costs.length;
int[][] dp = new int[n + 1][3];
for(int i = 1; i <= n; i++) {
dp[i][0] = Math.min(dp[i - 1][1], dp[i - 1][2]) + costs[i - 1][0];
dp[i][1] = Math.min(dp[i - 1][0], dp[i - 1][2]) + costs[i - 1][1];
dp[i][2] = Math.min(dp[i - 1][0], dp[i - 1][1]) + costs[i - 1][2];
}
return Math.min(dp[n][0], Math.min(dp[n][1],dp[n][2]));
}
}