Spark History Server 架构原理介绍


Spark History Server 是spark内置的一个http服务,通过 sbin/sbin/start-history-server.sh启动。History Server启动后,会监听一个端口,同时启动两个定时任务线程,分别用来解析eventLog日志文件和清理过期的eventLog日志文件。

Spark History Server启动后,我们可以直接在浏览器输入 http://ip:port 访问。一般默认端口是18080

一、eventLog日志文件以及相关参数

eventLog日志文件介绍

eventLog需要将配置spark.eventLog.enabled设置为true来开启,默认是关闭的。

开启这个配置后,当我们提交spark job到集群中运行时,之后spark job在运行过程中会不断的一些运行信息写到相关的日志文件中。具体的eventLog存放目录由配置spark.eventLog.dir决定的。

Spark job在运行中,会调用EventLoggingListener#logEvent()来输出eventLog内容。spark代码中定义了各种类型的事件,一旦某个事件触发,就会构造一个类型的Event,然后获取相应的运行信息并设置进去,最终将该event对象序列化成json字符串,追加到eventLog日志文件中。

所以,eventLog日志文件是由一行一行的json串组成的,每一行json串都代表了一个事件。如下图:

在这里插入图片描述

在eventLog目录中,我们可以看到各个任务的eventLog日志文件

在这里插入图片描述

eventLog日志的文件名组成是APPID_ATTEMPTID,其中带.inprogress的表示该任务还在运行中。

相关配置参数

一般这些配置在放在spark-defaults.conf

配置名称默认值备注
spark.eventLog.enabledfalse执行spark job时是否需要输出eventLog到指定目录,建议开启
spark.eventLog.dir/tmp/spark-eventseventLog输出的hdfs路径
spark.history.fs.update.interval10shistory server每隔一段时间就会检查一下eventLog日志目录下的文件是否发生变动,然后进行解析或者更新。如果想要更及时的查看到任务的最新信息,这个时间可以设置的短一些,但太短的周期也会加重服务器的负担。
spark.history.ui.maxApplicationintMaxValue限制web界面最多查询多少个任务信息。该值如果设置的太小,会导致webUI上看不到排在后面的一些任务。
spark.history.ui.port18080history server监听端口
spark.history.fs.cleaner.enabledfalse是否开启过期eventLog日志清除,建议开启。否则eventLog就非常多
spark.history.fs.cleaner.interval1deventLog日志清除线程执行的周期。规定每隔多久检查一次eventLog并清除过期的eventLog日志
spark.history.fs.cleaner.maxAge7d规定eventLog的过期时间
spark.eventLog.compressfalse是否压缩eventLog日志文件。
spark.history.retainedApplications50在内存中缓存任务信息详情的个数,不建议设置的太大。后面就详细介绍这个缓存机制。
spark.history.fs.numReplayThreadsceil(cpu核数/4)解析eventLog的线程数量

二、两个定时任务

解析eventLog日志文件线程

该线程在FsHistoryProvider调用startPolling()方法时,通过以下代码启动:

pool.scheduleWithFixedDelay(getRunner(checkForLogs), 0, UPDATE_INTERVAL_S, TimeUnit.SECONDS)

从上面的代码可以看出,该线程每隔一段时间就会执行checkForLogs方法。这个时间间隔由配置spark.history.fs.update.interval决定,默认是10s执行一次。

该线程启动后,会扫描spark.eventLog.dir目录下的所有文件,根据过滤条件筛选出需要解析的eventLog日志文件列表,之后每一个eventLog日志文件都会开启一个线程去解析,这些线程会放到一个线程池中统一调度。该线程池的大小由spark.history.fs.numReplayThreads配置决定,默认会根据服务器的cpu核数动态调整,公式为 ceil(cpu核数/4)

过滤eventLog日志的相关代码:

      // scan for modified applications, replay and merge them
      val logInfos: Seq[FileStatus] = statusList
        .filter { entry =>
          val prevFileSize = fileToAppInfo.get(entry.getPath()).map{_.fileSize}.getOrElse(0L)
          !entry.isDirectory() &&
            !entry.getPath().getName().startsWith(".") &&
            prevFileSize < entry.getLen() &&
            SparkHadoopUtil.get.checkAccessPermission(entry, FsAction.READ)
        }
        .flatMap { entry => Some(entry) }
        .sortWith { case (entry1, entry2) =>
          entry1.getModificationTime() >= entry2.getModificationTime()
      }

注意,这里的解析并不会解析整个eventLog文件信息,只会获取application相关的一些基本信息,如下:

        val attemptInfo = new FsApplicationAttemptInfo(
          logPath.getName(),
          appListener.appName.getOrElse(NOT_STARTED),
          appListener.appId.getOrElse(logPath.getName()),
          appListener.appAttemptId,
          appListener.startTime.getOrElse(-1L),
          appListener.endTime.getOrElse(-1L),
          lastUpdated,
          appListener.sparkUser.getOrElse(NOT_STARTED),
          appCompleted,
          fileStatus.getLen()
        )

在所有的eventLog日志都解析成FsApplicationAttemptInfo后,这些信息都会被放到applications对象中。applications是一个LinkedHashMap[String, FsApplicationHistoryInfo]类型的Map。key是eventLog的路径。

清理过期的eventLog日志文件的线程

该线程在FsHistoryProvider调用startPolling()方法时,通过以下代码启动:

pool.scheduleWithFixedDelay(getRunner(cleanLogs), 0, CLEAN_INTERVAL_S, TimeUnit.SECONDS)

从上面的代码可以看出,该线程每隔一段时间就会执行cleanLogs方法。这个时间间隔由配置spark.history.fs.cleaner.interval决定,默认是1天执行一次。

该线程启动后,会遍历内存中applications对象的所有item,然后获取FsApplicationHistoryInfo.lastUpdated的值,根据spark.history.fs.cleaner.maxAge配置判断是否过期,如果过期了就准备删了对应的eventLog日志文件。(注意:这里遍历的对象是applications的item,而不是eventLog目录下的所有文件。另外,判断规则也不是获取eventLog日志文件的更新时间,而是FsApplicationHistoryInfo对象中的lastUpdated属性

三、History Server的架构

History Server是基于内嵌的jetty来构建http服务的。

这里简单介绍一下jetty的架构,jetty架构的核心是Handler。一个请求过来时,会解析然后被封装成Request,之后会交给Server对象中的Handler处理。Server的Handler可以是各种各样类型的Handler,因为History Server里面注入的是ContextHandlerCollection,我们这里只介绍ContextHandlerCollection。这个类也是Handler的一个实现类,可以理解为是Handler的集合,持有一系列Handler对象,同时还能起到路由器的作用。ContextHandlerCollection基于ArrayTernaryTrie构造了一个字典树,用于快速匹配路径。当收到一个请求时,ContextHandlerCollection根据url找到对应的Handler,然后把请求交给这个Handler去处理。Handler里面封装了各种我们自己实现的Servlet,最终请求就落到了具体的那个Servlet上执行了。

History Server在启动时,会往ContextHandlerCollection中加入一个ServletContextHandler,这里放着jersey的ServletContainer类,用来提供restful api。jersey会自动解析org.apache.spark.status.api.v1包下面的类,然后将对应的请求转发过去。

History Server启动时还会注册其他的handler,这里不多做介绍。

缓存机制

任务的applications信息是长期驻留在内存并不断更新的。当我们在页面点击查看某个任务的运行详情时,History Server就会重新去解析对应eventLog日志文件,这时就是解析整个eventLog文件了,然后将构建好的详情信息保存到缓存中。它的缓存使用了guava的CacheLoader,缓存的个数限制由配置spark.history.retainedApplications决定,在将任务信息放入缓存的同时,History Server还会提前构建好这个任务的各种状态的sparkUI(也就是web界面),并创建好ServletContextHandler,然后放到ContextHandlerCollection中去。

我们可以通过阿里的arthas来观察一下ContextHandlerCollection的变化情况:

  1. 服务刚启动时,就5个GzipHandler,他们的底层也都是ServletContextHandler。

在这里插入图片描述

  1. 随意在WebUI上点击查看某个任务的详情信息后,我们可以看到增加了20来个的handler,大多都是和这个任务相关的handler。

在这里插入图片描述

  1. 再点一个任务详情

在这里插入图片描述

通过缓存任务详情信息以及UI,用户就可以很快的查看任务的各种维度的运行信息以及相关界面。

四、一些潜在的问题

1. spark.history.retainedApplications 设置太大导致的OOM问题

由于每个任务的详情信息数据量都比较大,有的任务能达到G级别。spark.history.retainedApplications如果设置的过大,很可能会导致java堆内存空间放不下这些信息,最终导致OOM。建议维持在默认值50即可。

2. eventLog 日志文件过大导致的OOM问题

就算spark.history.retainedApplications设置的很小,但是有些时候任务产生的eventLog本身就很大,比如一个eventLog日志就达到10G。只要解析几个类似的eventLog并缓存,就可能造成OOM了。对于这种情况,我们可以通过修改spark的源码来解决,目前可以通过2个方面入手:

  • 在eventLog解析线程过滤处加一个过滤条件,即eventLog文件大小大于100M的我们就过滤不处理。即过滤代码中加上entry.getLen()<104857600
  • 找出eventLog日志太大的原因,比如我们集群是由于Accumulator的信息过多,所以可以修改JsonProtocol#accumulablesToJson()方法,在spark job运行时不统计Accumulator的信息

3. History Server 突然不可用的问题

表现为history页面无数据,抓了一下包,发现所有的请求都被转发到首页对应的那个handler中去了。也就是所有的请求都返回了首页的html内容。比如在浏览器输入 “/xxxx/xxx/xxx/xx” 也被转发到了 “/”。归根究底就是jetty的路由问题。

经过观察,发现当ContextHandlerCollection中的handler到达一定数量,就会发生这种情况。一般当handler数量达到14000就可能导致jetty路由失效。

目前可以通过调小spark.history.retainedApplications来控制handler的数量,因为缓存一个任务的详情会增加23个handler,因此理论上将spark.history.retainedApplications控制在500以下都可以认为是安全的。

经测试,将spark.history.retainedApplications从1000调整到100后,不会发生类似问题

目前还未找到jetty路由失效的真正原因

附录

jetty架构详解

JMV进程诊断利器—arthas 介绍

  • 5
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Spark Streaming是基于Spark核心引擎的流处理框架,它将实时数据流分成小批次进行处理,每个批次都可以像RDD一样进行处理。Spark Streaming的架构原理主要包括以下几个方面: 1. 数据源:Spark Streaming支持多种数据源,包括Kafka、Flume、Twitter、HDFS等,用户可以根据自己的需求选择合适的数据源。 2. 数据接收器:Spark Streaming通过数据接收器从数据源中获取数据,并将数据分成小批次进行处理。数据接收器可以是Spark自带的接收器,也可以是自定义的接收器。 3. 数据处理:Spark Streaming将每个批次的数据转换成RDD,然后通过Spark的转换操作进行处理。用户可以使用Spark提供的各种转换操作,如map、filter、reduce等。 4. 数据输出:Spark Streaming支持多种数据输出方式,包括HDFS、数据库、Kafka等。用户可以根据自己的需求选择合适的输出方式。 5. 容错性:Spark Streaming具有高度的容错性,它可以在节点故障或数据丢失的情况下自动恢复,并保证数据处理的准确性和完整性。 总之,Spark Streaming的架构原理是基于Spark核心引擎的流处理框架,它通过数据源、数据接收器、数据处理和数据输出等组件实现实时数据流的处理和分析。 ### 回答2: Spark Streaming是Spark的一种实时数据处理框架,它可以在Spark的强大计算引擎上,实现对实时数据流的高效处理和分析。Spark Streaming的架构原理包括以下几个部分: 1. 数据输入层:Spark Streaming的数据输入来源可以是各种数据源,例如Kafka、Flume、HDFS、socket等。在Spark Streaming中,输入的数据流被称为DStream(Discretized Stream),它是一系列连续的RDD(Resilient Distributed Datasets)。 2. 数据处理层:DStream作为Spark Streaming的基本数据结构,可以使用Spark强大的RDD操作函数进行处理。例如map、reduce、join等。Spark Streaming支持的RDD操作函数都可以被应用到DStream上,因此可以实现强大和灵活的数据处理和分析。 3. 数据输出层:在数据处理完成后,Spark Streaming提供了多种数据输出方式,例如将数据存储在HDFS、将数据发送到Kafka或Flume等消息系统、将数据推送到Web UI或Dashboards等。用户可以根据自己的需求选择合适的输出方式。 4. 容错性和可伸缩性:Spark Streaming具有良好的容错性和可伸缩性,它可以在集群中进行分布式计算和分布式存储,并保证数据计算和处理的完整性。 总的来说,Spark Streaming的架构原理基于Spark强大的计算和分布式处理引擎,实现了对实时数据流的高效处理和分析。以应对大数据时代对实时业务处理和分析的需求。 ### 回答3: Spark Streaming架构原理是基于Spark的批处理引擎和Spark执行引擎基础上,实现了流式处理。其原理是将连续不断的数据流按照一定的时间间隔划分成批处理的数据流,将批数据流转化为RDD,再通过Spark执行引擎进行处理计算。 Spark Streaming架构包含以下组件: 1.数据输入源:包括数据输入流的来源,如Kafka、Flume、HDFS、Socket等。 2.输入DStream:对输入数据流进行封装,存储在内存中,以RDD形式进行处理。 3.数据处理引擎:处理包括数据转换、过滤、聚合等操作,使用Spark的高度并行化和内存计算能力。 4.处理结果输出:将处理结果输出到外部存储系统,如HDFS、数据库等。 在Spark Streaming的具体实现过程中,有以下三个重要的概念: 1.数据流窗口:指的是对输入的数据按照一定的时间间隔进行划分,把一段时间内的数据封装成一个小的包进行处理。可以设置窗口的大小和滑动间隔。 2.离散化流:将输入的数据流通过DStream划分成一系列的离散化的RDD,每个RDD包含窗口中一段时间内的数据。 3.转换操作:对离散化流中每个RDD进行转换操作,包括map、filter、reduce、join等操作,完成对数据流的处理。 在使用Spark Streaming架构进行数据流处理的时候,需要注意以下几点: 1.数据处理设计应该具备时效性和高可用性,尽可能减少延迟时间。 2.需要合理设置RDD缓存机制,避免数据丢失。 3.考虑到复杂的计算可能会使内存存储溢出,需要合理设置批处理的大小。 总的来说,Spark Streaming架构是一种基于Spark的流式数据处理框架。其实现原理是通过将流式数据划分为小的批处理进行离散化和转换,再结合Spark的高并发执行引擎实现对数据流的高速、时效性处理。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值