随机过程及应用(二) - E[X|Y] = E[Y E[X|Y]]证明

本文通过条件期望的迭代规则和假设给出Y后的处理方式,证明了E[X|Y]=E[YE[X|Y]]这一数学命题。首先利用条件期望的迭代规则进行证明,接着将Y视为已知条件下类似于常数的特性来完成证明。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

E[X|Y] = E[Y E[X|Y]]证明:

||   **1.Just use the following: 

For an integrable random variable Z ,
对于一个可积随机变量Z

E[Z]=E[ E[Z|F] ]
for any σalgebra F . If Y is Fmeasurable,

then

E[XYF]=YE[XF]
.

||   **2.Basically                                                     

E[XY]=E[ E[XY|Y] ]=E[ YE[X|Y] ] .

* * The first step is the iterated rule of conditional expectation.
* * 第一步是条件期望的迭代规则。
*
* * For the second, use the fact that given Y, Y is like a constant.
* * 第二,使用假设 给出Y , Y是一个常数。
* * However if you are looking for the usage of rigorous definition of conditional expectation, the solution by Davide Giraudo is the one to go for.
* * 但如果你在寻找条件期望严格定义的使用,还请参考Davide Giraudo提出的方法。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值