【应用随机过程】01. 随机过程的基本概念

本文深入探讨随机过程的基本概念,包括随机变量的定义和随机过程的阐述,以及有限维分布和数字特征如一维、二维分布函数、均值函数和自协方差函数等。通过讲解Kolmogorov定理和特殊随机过程如正态过程、白噪声过程,揭示随机过程在统计特性和实际应用中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第一讲 随机过程的基本概念

一、随机过程的定义

Part 1:随机变量

在介绍随机过程之前,我们先回忆一下随机变量是如何定义的。这一部分是概统中的内容,在这里我们主要对一些有用的概念做一个简单的回顾。

在概率论中的一个基本概念是随机试验,这种试验的结果不能预先确定。一个随机试验所有可能的基本结果的集合称为此试验的样本空间,记为 S S S 。随机变量就是定义在样本空间 S S S 上的实值单值函数,它给样本空间 S S S 中的每一个结果都指定了一个实数值与之对应。

随机变量的定义:设随机试验的样本空间为 S S S ,若 X = X ( e ) X=X(e) X=X(e) 为定义在样本空间 S S S 的实值单值函数,则称 X = X ( e ) X=X(e) X=X(e) 为随机变量。这里的 e ∈ S e\in S eS 代表样本空间的元素,称为样本点。

用映射的方式,我们可以将随机变量表示为 X ( e ) : S → R X(e):S\to \mathbb{R} X(e):SR

Part 2:随机过程

随机过程是一族随机变量,主要用于描述随时间变化的随机现象。

随机过程的定义:设 S S S 是样本空间, T ⊂ R T\subset\mathbb{R} TR ,如果对 ∀ t ∈ T \forall t\in T tT X ( t ) X(t) X(t) S S S 上的随机变量,则称 { X ( t ) : t ∈ T } \{X(t):t\in T\} { X(t):tT} S S S 上的随机过程,称 T T T 为时间参数空间。

用映射的方式,我们可以将随机过程表示为 X ( t , e ) : T × S → R X(t,e):T\times S\to\mathbb{R} X(t,e):T×SR 。可以看出,随机过程是一个二元实值单值函数。不过这样的定义未免有些抽象,比较容易的理解方式是单独考虑每个参数。

  • 任意给定 t ∈ T t\in T tT ,则有 X ( t , ⋅ ) X(t,\cdot) X(t,) S → R S\to\mathbb{R} SR 上的函数,即为 S S S 上的随机变量,其含义为随机过程在 t t t 时刻的状态。
  • 任意给定 e ∈ S e\in S eS ,则有 X ( ⋅ , e ) X(\cdot,e) X(,e) T → R T\to\mathbb{R} TR 上的函数,称为随机过程的样本轨道或样本曲线,其含义为随机过程在 T T T 上的一次实现。

我们将 X ( t ) X(t) X(t) 的所有可能取值的全体称为状态空间,记为 I I I 。根据时间参数空间 T T T 和状态空间 I I I 的不同类别,我们可以将随机过程分为以下四种情况:离散时间离散状态的随机过程、离散时间连续状态的随机过程、连续时间离散状态的随机过程、连续时间连续状态的随机过程。

二、有限维分布和数字特征

Part 1:有限维分布

由于随机过程在任一时刻的状态都是随机变量,因此我们可以也利用概率分布和数字特征来刻画一个随机过程的统计性质。首先我们介绍随机过程的概率分布,这里我们需要引入有限维分布的概念。

一维分布函数:给定随机过程 { X ( t ) : t ∈ T } \{X(t):t\in T\} { X(t):tT} ,对于每一个固定的 t ∈ T t\in T tT ,随机变量 X ( t ) X(t) X(t) 的分布函数一般与 t t t 有关,记为
F t ( x ) = P ( X ( t ) ≤ x )   , x ∈ R   , F_t(x)=P(X(t)\leq x) \ , \quad x\in\mathbb{R} \ , Ft(x)=P(X(t)x) ,xR ,
称为随机过程 { X ( t ) : t ∈ T } \{X(t):t\in T\} { X(t):tT} 的一维分布函数。当 t t t 取遍 T T T 中的所有元素时,我们可以得到一系列的分布函数,将这些分布函数的全体所构成的集合称为一维分布函数族,记为 { F X ( x ; t ) : t ∈ T } \left\{F_X(x;t):t\in T\right\} { FX(x;t):tT} 。一维分布函数族刻画了随机过程在各个单独时刻的统计特性。

二维分布函数:对于固定的 s , t ∈ T s,t\in T s,tT ,将二元随机变量 ( X ( s ) ,   X ( t ) ) (X(s),\,X(t)) (X(s),X(t)) 的联合分布函数记为
F s , t ( x , y ) = P ( X ( s ) ≤ x , X ( t ) ≤ y )   , x ∈ R   , y ∈ R   , F_{s,t}(x,y)=P(X(s)\leq x,X(t)\leq y) \ , \quad x\in\mathbb{R} \ , \quad y\in\mathbb{R} \ , Fs,t(x,y)=P(X(s)x,X(t)y) ,xR ,yR ,
称为随机过程 { X ( t ) : t ∈ T } \{X(t):t\in T\} {

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值