对于gabor变换和gabor小波变换理解与总结

         最近开始研究gabor变换,之前只是停留在表面的意义上,没有深入研究,总是将gabor变换和gabor小波变换混为一团 ,给自己后续的学习带来很大的困扰,借此机会查阅了相关资料好好整理总结一下,以便区分。不过在说gabor变换和gabor小波变换之前,不得不提一下傅里叶变换和小波变换,因为它们都是由傅里叶变换的演变而产生的。

一、定义与联系


傅立叶变换

      表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。傅立叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅立叶变换用正弦波作为信号的成分。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的,最后应用于时域到频域分析的工具。傅里叶变换提供了一种把时域信号转换到频域进行分析的途径,但它只考虑时域和频域之间的一对一映射关系,是一种时频完全分离的分析方法。这种方法用于分析平稳信号,在分析非平稳信号时就有些力不从心了。

Gabor 变换

     针对傅里叶变换不能局部化分析, Gabor引入了Gabor 变换,又称短时傅里叶变换,也就是说gabor变换是傅里叶变换的一种特殊情况,实质还是傅里叶变换。但它在一定程度上解决了傅里叶变换的时频分离的不足。根据模拟人类视觉系统而产生。通过模拟人类视觉系统,可以将视网膜成像分解成一组滤波图像,每个分解的图像能够反映频率和方向在局部范围内的强度变化。通过一组多通道Gabor滤波器,可以获得纹理特征。Gabor变换的根本就是Gabor滤波器的设计,而滤波器的设计又是其频率函数(U,V)和高斯函数参数(一个)的设计。实际上,Gabor变换是为了提取信号傅里叶变换的局部信息,使用了一个高斯函数作为窗函数,因为一个高斯函数的傅里叶r变换还是一个高斯函 数,所以傅里叶逆变换也是局部的。通过频率参数和高斯函数参数的选取,Gabor变换可以选取很多纹理特征,但是Gabor是非正交的,不同特征分量之间有冗余,所以在对纹理图像的分析中效率不太高。Gabor变换在一定程度上解决了局部分析的问题,但对于突变信号和非平稳信号仍难以得到满意的结果,即Gabor变换仍存在着较严重的缺陷:
      1)Gabor变换的时频窗口大小、形状不变,只有位置变化,而实际应用中常常希望时频窗口的大小、形状要随频率的变化而变化,因为信号的频率与周期成反比,对高频部分希望能给出相对较窄的时间窗口,以提高分辨率,在低频部分则希望能给出相对较宽的时间窗口,以保证信息的完整性,总之是希望能给出能够调节的时频窗;
      2)Gabor变换基函数不能成为正交系,因此为了不丢失信息,在信号分析或数值计算时必须采用非正交的冗余基,这就增加了不必要的计算量和存储量。
      3)Gabor 变换在待分析信号上加一个窗口函数,改变了原信号的性质。

小波变换

         它的原理是同样来源于傅里叶变换!小波变换理论是继Fourier分析之后的一个突破性进展,它给许多相关领域提供了一种强有力的分析工具。小波变换是一个时间和频率的局域变换,利用联合的时间-尺度函数分析非平稳信号,能有效地从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多分辨率细化分析,从根本上克服了Fourier分析只能以单个变量描述信号的缺陷。一种多分辨率分析工具,为不同尺度上信号的的分析和表征提供了精确和统一框架。但是它比传统的傅里叶变换有更多优点:

        1)小波变换可以覆盖整个频域;

         2) 可以通过选取合适滤波器,减少或除去提取的不同特征之间的 冗余;

         3) 具有变焦特性,低频段可用高频率分辨率和低时间分辨率,在高频段可用低频率分辨率和高时间分辨率

         4)小波变换在实现上有快速算法(Mallat小波分析算法)。
        提到小波变换必须提到小波函数,简单的说,积分为0的函数都可以作为小波函数,还可以通过一系列变化得到连续的小波变换式。小波变换适用小波函数族及其相应的尺度函数将原始信号分解成不同的频带。一般所说的小波变换仅递归分解信号的低频部分,以生成下一尺度的各频道输出。层层分解(图片不附了),这样的分解通常称为金字塔结构小波变换。如果不仅仅对低通滤波器输出进行递归分解,而且也对高通滤波器的输出进行递归分解,则称之为小波包分解。(树状的图形)小波变换具有良好的时频局部化、尺度变换和方向特征,是分析纹理的有力工具。

二、区别    

1、傅里叶变换、Gabor变换和小波变换这个三个变换分别有自己特定的定义变换形式,因此在实际应用中的侧重点也是不同的。总体上来说,傅里叶变换更适合应于稳定信号;Gabor变换更多的应用于比较稳定的非稳定信号;小波变换偏重于在极其不稳定的非稳定信号上的应用。

2、Gabor变换属于加窗傅立叶变换,Gabor函数可以在频域不同尺度、不同方向上提取相关的特征。而小波变换不仅实现在频域上的加窗,同时实现在时域上的加窗,它继承和发展了傅里叶变换局部化的思想,同时又克服了窗口大小不随频率变化的缺点,是进行信号时频分析和处理的理想工具。

3、gabor变换不是小波变换,但gabor小波变换是小波变换。前面讲过了gabor变换与小波变换的区别,所以gabor变换和gabor小波变换不是一回事。gabor函数本身不具有小波函数的正交特性,有人说如果Gabor函数经过正交化处理后,那就能称之为Gabor小波。将gabor变换正交化,也就成为了gabor小波变换。


  文章结合自己的理解汇聚了百家之言,可能存在不妥或错误的地方,还望大家多多指教。如果以后有更好的解释,将会进一步更新。

参考文献

[1] http://blog.csdn.net/dadaadao/article/details/7275868
[2] http://glearning.tju.edu.cn/mod/forum/discuss.php?d=13834&mode=-1
[3] Fourier变换和Gabor变换与小波变换的比较研究





   
       




展开阅读全文

没有更多推荐了,返回首页