传送门:【HDU】4115 Eliminate the Conflict
题目分析:这道2-sat略恶心啊。。
用了比较直观的建图方法,大概一看就能懂。
设石头(R),布(P),剪刀(S)。
由于每一把出了一种手势以后便不能出其他的了,所以建边:
< R , ~P > , < R , ~S > , < P , ~R > , < P , ~S > , < S , ~R > , < S , ~P >
由于每一把至少要么平局要么胜,假设对方出石头(R),建边:
< ~P , S > , < ~S , P >
接下来如果限制第 i 盘与第 j 盘出的必须相同,建边:
< Ri , Rj > , < Rj , Ri > , < Pi , Pj > , < Pj , Pi > , < Si , Sj > , < Sj , Si >
同样如果要求必须不同,建边:
< Ri , ~Rj > , < Rj , ~Ri > , < Pi , ~Pj > , < Pj , ~Pi > , < Si , ~Sj > , < Sj , ~ Si >
最后跑一遍2-sat就能得到答案。感觉就是约束要多一些,其他和平时的差不多。
代码如下:
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std ;
#define REP( i , a , b ) for ( int i = ( a ) ; i < ( b ) ; ++ i )
#define FOR( i , a , b ) for ( int i = ( a ) ; i <= ( b ) ; ++ i )
#define REV( i , a , b ) for ( int i = ( a ) ; i >= ( b ) ; -- i )
#define CLR( a , x ) memset ( a , x , sizeof a )
#define CPY( a , x ) memcpy ( a , x , sizeof a )
const int MAXN = 60000 ;
const int MAXE = 200000 ;
struct Edge {
int v ;
Edge* next ;
} E[MAXE] , *H[MAXN] , *cur ;
int dfn[MAXN] , low[MAXN] , scc[MAXN] , scc_cnt ;
int S[MAXN] , top , dfs_clock ;
int n , m ;
void init () {
cur = E ;
top = scc_cnt = dfs_clock = 0 ;
CLR ( H , 0 ) ;
CLR ( dfn , 0 ) ;
CLR ( scc , 0 ) ;
}
void addedge ( int u , int v ) {
cur -> v = v ;
cur -> next = H[u] ;
H[u] = cur ++ ;
}
void tarjan ( int u ) {
dfn[u] = low[u] = ++ dfs_clock ;
S[top ++] = u ;
for ( Edge* e = H[u] ; e ; e = e -> next ) {
int v = e -> v ;
if ( !dfn[v] ) {
tarjan ( v ) ;
low[u] = min ( low[u] , low[v] ) ;
} else if ( !scc[v] ) low[u] = min ( low[u] , dfn[v] ) ;
}
if ( low[u] == dfn[u] ) {
++ scc_cnt ;
do {
scc[S[-- top]] = scc_cnt ;
} while ( u != S[top] ) ;
}
}
int ok () {
REP ( i , 0 , n * 6 ) if ( !dfn[i] ) tarjan ( i ) ;
REP ( i , 0 , n * 3 ) if ( scc[i << 1] == scc[i << 1 | 1] ) return 0 ;
return 1 ;
}
void scanf ( int& x , char c = 0 ) {
while ( ( c = getchar () ) < '0' || c > '9' ) ;
x = c - '0' ;
while ( ( c = getchar () ) >= '0' && c <= '9' ) x = x * 10 + c - '0' ;
}
void solve () {
int x , i , j ;
init () ;
scanf ( n ) ;
scanf ( m ) ;
REP ( o , 0 , n ) {
scanf ( x ) ;
int a = x - 1 ;
int b = x % 3 ;
addedge ( o * 6 + ( a << 1 | 1 ) , o * 6 + ( b << 1 ) ) ;
addedge ( o * 6 + ( b << 1 | 1 ) , o * 6 + ( a << 1 ) ) ;
addedge ( o * 6 + 0 , o * 6 + 3 ) ;
addedge ( o * 6 + 0 , o * 6 + 5 ) ;
addedge ( o * 6 + 2 , o * 6 + 1 ) ;
addedge ( o * 6 + 2 , o * 6 + 5 ) ;
addedge ( o * 6 + 4 , o * 6 + 1 ) ;
addedge ( o * 6 + 4 , o * 6 + 3 ) ;
}
while ( m -- ) {
scanf ( i ) ;
scanf ( j ) ;
scanf ( x ) ;
-- i , -- j ;
addedge ( i * 6 + 0 , j * 6 + 0 + x ) ;
addedge ( i * 6 + 2 , j * 6 + 2 + x ) ;
addedge ( i * 6 + 4 , j * 6 + 4 + x ) ;
addedge ( j * 6 + 0 , i * 6 + 0 + x ) ;
addedge ( j * 6 + 2 , i * 6 + 2 + x ) ;
addedge ( j * 6 + 4 , i * 6 + 4 + x ) ;
}
printf ( ok () ? "yes\n" : "no\n" ) ;
}
int main () {
int T , cas = 0 ;
scanf ( T ) ;
while ( T -- ) {
printf ( "Case #%d: " , ++ cas ) ;
solve () ;
}
return 0 ;
}