【数据产品案例】阿里XSigma智能客服调度平台

案例来源:@阿里技术

案例地址:https://mp.weixin.qq.com/s/nqOvcKtxpqehWFO4XkXr5g

 

0. 背景:以往的客服调度由人工进行,效率低、手段少、无法评测,难以有效应对并发的客服需求(如天猫某个优惠券出了问题,可能瞬间涌入上千通热线)

 

1. 客服调度的难点:

    1)机房可以快速增加设备,客服上岗需要培训

    2)客服间差异大,客服一般分为多个技能组,组之间能解决的问题不一样;同时人与人之间也有能力的差异

    3)客服是人,有权休息、下班,调度可能会影响客服的情绪,从而影响服务质量

    4)突发场景多,业务问题、系统故障是无规律爆发的,难以提前准备

 

2. 解决方案:XSigma智能客服调度系统

    1)排班系统:

        i1:优化目标:60秒接起率

        i2:约束条件:排班约束(晚班后不能排早班)、身份特质(孕妇等)、请假、客服人员偏好等

        i3:服务量预测:时间序列模型,预测大致服务量

        i4:排班:排班是一个多约束优化问题,使用组合优化算法进行排班

### Hampel 函数参数和返回值解析 #### 输入参数解释 - **`x`**: 输入信号向量,表示待处理的时间序列数据[^1]。 - **`adj` (窗口大小)**: 定义用于计算局部统计特征的数据窗长度的一半减一,默认值为3。即实际窗口宽度为 `2*adj + 1`。此参数决定了检测离群点时考虑的邻域范围[^2]。 - **`sds` (标准差倍数)**: 设定判断样本是否属于异常的标准阈值因子,默认设置为3。具体来说,当某个观测值偏离其所在滑动窗口内的中位数值超过该因子乘以估计得到的标准偏差时,则认为这个点可能是异常点。 #### 输出参数说明 - **`y`**: 预处理后的输出信号向量,其中已通过Hampel滤波器移除了或修正了原始输入中的潜在异常值。 - **`i`**: 离群索引数组,标记哪些位置上的元素被识别为异常点(布尔型),对于每一个被认为是离群点的位置赋予逻辑真(`true`) 或者整数值 `1`;反之则赋值为假 (`false`) 或者零 [`0`] 。这有助于后续分析人员进一步审查这些特殊点并采取适当措施。 - **`xmedian`**: 记录了在整个时间序列上应用移动中位数算法后获得的结果序列。每个时刻对应的值代表以其为中心的一个固定宽度区间内所有观察到的数据项取中位值得来的结果。 - **`xsigma`**: 表达的是基于上述相同区间的稳健尺度测量——MAD(Median Absolute Deviation),即绝对中位差异的一种变体形式来估算总体方差情况下的标准化残差分布状况。 ```matlab % 示例代码展示如何调用hampel函数以及可视化结果 n = linspace(0, pi * 4, 1e3); x = sin(n) + rand(size(n)) / 5; [y, i, xmedian, xsigma] = hampel(x); figure(); plot(n, x); % 原始信号图 hold on; plot(n, [1; 1].*(xmedian + sds.*[-1; 1].*xsigma)); % 上下限线 plot(find(i), x(i), 'sk'); % 异常点标注 legend('Signal', 'Lower Bound', 'Upper Bound', 'Detected Outliers'); title('Detection of outliers using the Hampel filter'); xlabel('Time Index'); ylabel('Amplitude'); grid minor; ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值