leetcode编辑距离

本文解析了LeetCode编辑距离问题的求解过程,重点阐述了状态转移方程:当字符相同时,无需操作;不同时,通过替换、删除、插入三种操作最小化编辑距离。举例说明了dp[i-1][j-1]、dp[i-1][j]、dp[i][j-1]在实际场景的应用。
摘要由CSDN通过智能技术生成
https://leetcode-cn.com/problems/edit-distance/

讲一下我自己对状态转移方程的理解,麻烦大家看看我说得对不对有没有道理:
(一)、当word1[i]==word2[j]时,由于遍历到了i和j,说明word1的0~i-1和word2的0~j-1的匹配结果已经生成,
    由于当前两个字符相同,因此无需做任何操作,dp[i][j]=dp[i-1][j-1]
(二)、当word1[i]!=word2[j]时,可以进行的操作有3个:
            ① 替换操作:可能word1的0~i-1位置与word2的0~j-1位置的字符都相同,
    只是当前位置的字符不匹配,进行替换操作后两者变得相同,
    所以此时dp[i][j]=dp[i-1][j-1]+1(这个加1代表执行替换操作)
            ②删除操作:若此时word1的0~i-1位置与word2的0~j位置已经匹配了,
    此时多出了word1的i位置字符,应把它删除掉,才能使此时word1的0~i(这个i是执行了删除操作后新的i)
    和word2的0~j位置匹配,因此此时dp[i][j]=dp[i-1][j]+1(这个加1代表执行删除操作)
            ③插入操作:若此时word1的0~i位置只是和word2的0~j-1位置匹配,
    此时只需要在原来的i位置后面插入一个和word2的j位置相同的字符使得
    此时的word1的0~i(这个i是执行了插入操作后新的i)和word2的0~j匹配得上,
    所以此时dp[i][j]=dp[i][j-1]+1(这个加1代表执行插入操作)
            ④由于题目所要求的是要最少的操作数:所以当word1[i] != word2[j] 时,
    需要在这三个操作中选取一个最小的值赋格当前的dp[i][j]
(三)总结:状态方程为:
 if(word1[i] == word2[j]):
    dp[i][j] = dp[i-1][j-1]
 else:
    min(dp[i-1][j-1],dp[i-1][j],dp[i][j-1])+1

对“dp[i-1][j-1] 表示替换操作,dp[i-1][j] 表示删除操作,dp[i][j-1] 表示插入操作。”的补充理解:

    以 word1 为 "horse",word2 为 "ros",且 dp[5][3] 为例,即要将 word1的前 5 个字符转换为 word2的前 3 个字符,也就是将 horse 转换为 ros,因此有:

   (1) dp[i-1][j-1],即先将 word1 的前 4 个字符 hors 转换为 word2 的前 2 个字符 ro,然后将第五个字符 word1[4](因为下标基数以 0 开始) 由 e 替换为 s(即替换为 word2 的第三个字符,word2[2])
   (2) dp[i][j-1],即先将 word1 的前 5 个字符 horse 转换为 word2 的前 2 个字符 ro,然后在末尾补充一个 s,即插入操作
   (3) dp[i-1][j],即先将 word1 的前 4 个字符 hors 转换为 word2 的前 3 个字符 ros,然后删除 word1 的第 5 个字符
    
public int minDistance(String word1, String word2) {
            int m = word1.length();
            int n = word2.length();
            int[][] dp = new int[m + 1][n + 1];//word1从0-i变成word2从0-j的最小步数
            for (int j = 0; j <= n; j++) {
                dp[0][j] = j;//word1为空时,变成word2的最小步数,每增加一个字符就插入一个字符
            }
            for (int i = 0; i <= m; i++) {
                dp[i][0] = i;//word1为空时,变成word2的最小步数,每减少一个字符就删除一个字符
            }
            for (int i = 1; i <= m; i++) {
                for (int j = 1; j <= n; j++) {
                    if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
                        dp[i][j] = dp[i - 1][j - 1];
                    } else {
                        //从0-i-1与0-j匹配,执行删除操作
                        dp[i][j] = dp[i - 1][j] + 1;
                        //从0-i与0-j-1匹配,执行插入操作
                        dp[i][j] = Math.min(dp[i][j - 1] + 1, dp[i][j]);
                        //从0-i-1与0-j-1匹配,执行替换操作
                        dp[i][j] = Math.min(dp[i - 1][j - 1] + 1, dp[i][j]);
                    }
                }
            }
            return dp[m][n];

        }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值