C++/Qt中调用Python模块

本文详细介绍了如何在C++/Qt环境中调用Python模块,包括开发环境搭建、Python模块开发、C++调用Python的步骤,如添加依赖库、初始化Python、导入模块、打包参数及解析返回值等关键操作。
摘要由CSDN通过智能技术生成

C++/Qt中调用Python模块

Date Author Version Note
2021.03.15 Dog Tao V1.0 整理后发表。
2023.11.10 Dog Tao V1.1 1. 调用Py_SetPythonHome函数指定python库与解释器的路径。 2. 增加应用程序打包部署的相关说明。

开发环境搭建

作为一种胶水语言,Python 能够很容易地调用 CC++ 等语言,也能够通过其他语言调用 Python 的模块。Python 提供了 C++ 库,使得开发者能很方便地从 C++ 程序中调用 Python 模块。

值得注意的是,Windows平台下的Python提供的静态库接口只支持MSVC编译器

参考的资料:

开发Python模块

Python 模块的源码示例:

# -*- coding: utf-8 -*-

' a module for alwhales data fit project '

__author__ = 'Dog Tao'

import sys

# 根据不同的开发环境设置对应的外部模块的路径
sys.path.append('E:\\Working\\PythonDev\\DataFitting\\venv\Lib\\site-packages')

import numpy as np
import matplotlib.pyplot as plt

from pylab import mpl
from scipy import interpolate
from scipy.optimize import curve_fit

mpl.rcParams['font.sans-serif'] = ['SimHei']  # 指定默认字体
plt.rcParams['axes.unicode_minus'] = False  # 解决负数坐标显示问题

def polynomial_fitting(x_series, y_series, deg=3):
    """
    多项式拟合方法
    :param x_series: x series of data point
    :param y_series: y series of data point
    :param deg: order of polynomial
    :return: list type of polynomial fit parameters
    """
    return np.polyfit(x_series, y_series, deg)

def interpolate_linear(x_series, y_series, x_fit_series):
    """
    线性插值拟合
    :param x_series: x series of data point
    :param y_series: y series of data point
    :param x_fit_series: new series of x to fit b_spline
    :return: list type of linear fit callable object
    """
    f_linear = interpolate.interp1d(x_series, y_series)
    return f_linear(x_fit_series)

def interpolate_b_spline(x_series, y_series, x_fit_series):
    """
    B样条曲线插值
    :param x_series: x series of data point
    :param y_series: y series of data point
    :param x_fit_series: new series of x to fit b_spline
    :return: y series of fit data
    """
    tck = interpolate.splrep(x_series, y_series)
    return interpolate.splev(x_fit_series, tck, 0)

def func_4PL(x, a, b, c, d):
    """
    四参数模式为Y=(a-d)/[1+(x/c)^b]+d, 目前最常用与免疫检测领域,用于描述吸光度随抗原浓度变化的规律
    :param x: value
    :param a: 曲线上渐近线估值
    :param b: 曲线下渐近线估值
    :param c: 曲线的斜率
    :param d: 最大结合一半时对应的剂量
    :return: y value
    """
    return (a - d) / (1 + (x / c) ** b) + d

def func_5PL(x, a, b, c, d, e):
    """
    四参数模式为Y=(a-d)/[1+(x/c)^b]+d, 目前最常用与免疫检测领域,用于描述吸光度随抗原浓度变化的规律
    :pa
C++ Qt 项目调用 Python 代码通常可以使用 QPython 库,这是一个专门为 Qt 开发者设计的跨平台库,它允许你在 Qt 程序无缝地集成 Python 代码。以下是基本步骤: 1. **安装 QPython**: - 首先,确保你已经在你的系统上安装了 Python 和 PyQt5 或 PySide2。QPython 依赖于它们。 - 可从 GitHub (https://github.com/albertz/qpython) 或官网下载 QPython 的库。 2. **配置 QPython**: - 添加 QPython 到你的 Qt 项目的构建文件(如.pro 文件),例如,添加 `QT += qpython` 来启用 QPython 支持。 - 如果需要,创建一个 Python 脚本文件 (.py),这将作为你的“入口”点。 3. **在 C++ 导入并调用 Python 代码**: - 使用 `QProcess` 对象启动 Python 进程,传递你的脚本作为参数,比如: ```cpp QProcess *process = new QProcess(this); process->start(QStringLiteral("qpython"), { QStringLiteral("/path/to/your/script.py") }); ``` - 接收 Python 的输出,可以通过监听 `readyReadStandardOutput` 或 `readyReadStandardError` 信号来读取数据。 4. **通信与数据交换**: - Python 代码可以通过标准输入、输出和错误流与 C++ 交互。你可以向 Python 发送字符串(`process->write(inputStr.toUtf8());`),然后从 Python 获取结果(`QString output = QString::fromUtf8(process->readAllStandardOutput());`)。 注意,虽然这种方法方便快捷,但它并不适合处理复杂的交互或性能密集型任务,因为每次调用 Python 会有一个额外的进程开销。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

全能骑士涛锅锅

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值