hdu2073(无限的路)

无限的路

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5148    Accepted Submission(s): 2653


Problem Description
甜甜从小就喜欢画图画,最近他买了一支智能画笔,由于刚刚接触,所以甜甜只会用它来画直线,于是他就在平面直角坐标系中画出如下的图形:



甜甜的好朋友蜜蜜发现上面的图还是有点规则的,于是他问甜甜:在你画的图中,我给你两个点,请你算一算连接两点的折线长度(即沿折线走的路线长度)吧。
 

Input
第一个数是正整数N(≤100)。代表数据的组数。
每组数据由四个非负整数组成x1,y1,x2,y2;所有的数都不会大于100。
 

Output
对于每组数据,输出两点(x1,y1),(x2,y2)之间的折线距离。注意输出结果精确到小数点后3位。
 

Sample Input
  
  
5 0 0 0 1 0 0 1 0 2 3 3 1 99 99 9 9 5 5 5 5
 

Sample Output
  
  
1.000 2.414 10.646 54985.047 0.000
 代码如下:
#include<stdio.h>
#include<cmath>
#include<string.h>
#include<iostream>
using namespace std;
const double X=sqrt(2.0);
double dis[202];


int main()
{
    double fun(int a,int b);
	int x1,x2,y1,y2,i;
	int t;
	for( i=0;i<=200;i++)
		dis[i]=sqrt(double(i*i+(i+1)*(i+1)));
	cin>>t;
	while(t--)
	{
		cin>>x1>>y1>>x2>>y2;
		if(x1+y1>x2+y2)
		{
			swap(x1,x2);
			swap(y1,y2);
		}
		printf("%.3lf\n",(fun(x2,y2)-fun(x1,y1))  );
		
	}
	return 0;
}
double fun(int a,int b)
{
	int i;
	double sum=0;
	int n=a+b;
	for(i=1;i<n;i++)
		sum+=i*X*1.0;
	sum+=(a*X);
	for(i=0;i<n;i++)
	{
		sum+=dis[i];
	}
	return sum;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值