知识图谱的自动构建是当前人工智能领域的热门研究方向之一,旨在通过自动化技术从大量数据中提取实体、关系及属性,形成结构化的知识体系。
下面介绍几种常见的自动构建知识图谱的技术和工具。
1. 基于大型语言模型(LLMs)的框架
(1)SAC-KG: 是一个通用的知识图谱构建框架,旨在利用大型语言模型(LLMs)作为领域专家,自动生成专业且准确的多层次知识图谱。由中科大和阿里联合提出,SAC-KG利用大型语言模型作为领域专家,通过生成器、验证器和剪枝器三个组件,实现从原始领域语料库到领域知识图谱的自动构建。该框架能够处理大规模数据集,生成的图谱精度达到89.32%,比现有方法提高了20%以上。
SAC-KG核心组件包括:
生成器(Generator):从原始领域语料库中提取关系和尾部实体,构建单层知识图谱。
验证器(Verifier):纠正生成器产生的错误,确保生成的三元组的准确性。
剪枝器(Pruner):决定新生成的尾部实体是否需要进一步迭代以构建下一层级的知识图谱 。
特点是:
高精度:实验表明,SAC-KG 的精度达到 89.32%,比现有最先进方法提高了 20% 以上。
大规模构建能力:能够处理超过一百万个节点的领域知识图谱。
无监督方法:无需标记数据,可应用于任何具有大量非结构化文本的领域 。
应用场景:
SAC-KG 适用于需要高精度和大规模知识图谱的领域,如医学、金融和学术研究。
(2)Globe Explorer:是一种基于大型语言模型的知识图谱构建工具,能够在短时间内快速生成知识图谱。它依托大型语言模型,该工具可以根据输入的关键词或问题,快速筛选信息并构建与目标信息紧密相关的知识图谱。
特点是:
快速构建:仅需 30 秒即可完成知识图谱的构建。
领域适应性:支持多种领域的知识图谱构建,通过 LLM 的领域专家能力生成高质量图谱 。
应用场景:
Globe Explorer 适用于需要快速生成知识图谱的场景,如新闻分析、市场调研和项目管理。
2. 结合图神经网络(GNN)和语言模型的工具
GraphAgent:由香港大学和香港科技大学联合推出,旨在结合大语言模型(LLM)与图结构数据,实现知识图谱的自动化构建。GraphAgent结合图神经网络和大型语言模型,能够处理结构化和非结构化数据,自动构建知识图谱并展示复杂关系。其多代理架构支持图生成、任务规划和执行,广泛应用于学术网络分析、电子商务推荐和金融风险管理等领域。
核心组件包括:
图生成智能体(Graph Generation Agent):负责构建语义知识图谱(SKG),通过双阶段迭代机制提取深层语义信息。
任务规划智能体(Task Planning Agent):解析用户输入意图,规划任务类型(如图预测或开放式生成)。
任务执行智能体(Task Execution Agent):执行具体的任务,如图分析或文本生成 。
特点是:
异构图表示:支持结构化和非结构化数据的融合。
多智能体协同:通过多个智能体的分工与协作,实现复杂任务的高效处理。
图-指令对齐:通过图-指令匹配任务训练 LLM,提升对图结构数据的理解能力。
应用场景是:
GraphAgent 适用于需要处理复杂关系网络的场景,如学术研究、电子商务和金融风险分析。
3. 开源知识图谱构建平台
Knowledge Graph Studio(KG Studio):由WhyHow.AI团队开源,KG Studio是一个专注于知识图谱构建和管理的平台,支持模块化的图谱构建和向量化的三元组技术。它将RAG(检索增强生成)理念深度整合到知识图谱构建中,支持多种数据源接入和智能数据清洗。它旨在通过整合知识图谱技术和检索增强生成(RAG)理念,提供一个灵活、高效且易于扩展的知识图谱构建解决方案。
KG Studio的技术架构是其核心竞争力之一,主要特点如下:
多模存储架构 : 结合图数据库、向量数据库、关系数据库和分布式缓存,支持结构化和非结构化数据的存储。通过嵌入三元组(Triple Embedding)技术,支持语义相似性和精确匹配的混合检索 。
模块化微服务架构:每个功能模块独立运行,包括数据接入与处理、知识图谱构建、知识推理与分析。支持多种数据源(如CSV、JSON、PDF)的接入和智能数据清洗 。
基于NoSQL的灵活性: 使用MongoDB作为基础架构,支持动态模式和复杂嵌套数据结构。提供灵活的扩展能力和自定义索引策略 。
核心功能亮点:
数据接入与清洗: 支持多种数据格式的接入,并通过内置智能工具完成数据去重、格式标准化和异常值处理。
知识图谱构建: 提供实体识别、关系抽取和属性管理功能。支持基于规则和深度学习的关系识别,适合不同场景 。
知识推理与语义分析: 内置强大的推理引擎,支持基于规则的推理和语义计算。支持自然语言问题查询,返回相关节点、关系和嵌入向量。
RAG原生设计: 首次将RAG理念深度整合到知识图谱构建中,确保知识溯源的完整性 。
应用场景。KG Studio适用于多种领域,包括但不限于:
企业知识管理:构建统一的知识库,支持智能搜索和知识共享。
医疗健康:构建患者病历知识图谱,辅助医生进行诊断和药物分析。
金融风控:构建企业关联图谱,帮助金融机构识别潜在风险。
公安执法:构建案件知识图谱,支持证据链梳理和跨案件关联分析 。
未来展望:
WhyHow.AI团队计划进一步优化KG Studio的性能,引入更多AI能力(如自动化知识图谱构建和实时推理),并拓展其在更多垂直领域的应用。此外,通过开放API和SDK,KG Studio将吸引更多开发者参与生态建设。
4. 技术原理
知识图谱的自动构建过程主要包括以下几个步骤:
-
数据预处理:清洗和标准化数据,去除噪声。
-
实体识别与消歧:通过深度学习模型识别文本中的实体,并将同义实体统一。
-
关系抽取:利用规则或深度学习方法提取实体之间的关系。
-
知识推理与验证:通过规则引擎和验证器确保生成的知识图谱的准确性和一致性。
总结
知识图谱的自动构建技术正在快速发展,通过结合大型语言模型、图神经网络和微服务架构,这些工具不仅提高了构建效率,还显著提升了知识图谱的准确性和应用范围。未来,随着技术的进一步发展,知识图谱的自动构建有望在更多领域实现智能化应用。