《数学之美》阅读笔记2
上一章《数学之美》讲述了从人类文明开始以来,语言就一直伴随着人类文明的前进。这一章讲述了计算机处理自然语言的过程以及顶尖科学家做出的努力。
在计算机被发明之前,不同文明之间的交流通过翻译这一职业进行沟通的。随着计算机的发展,计算机在某些方面做得比人还要好,比如计算。那个时候科学家就开始考虑,能否让计算机能够听懂人类的语言呢?吴军博士给了一个很明确的答案,那就是能!
然而,让计算机能够听懂人类的自然语言可不是一件简单的事情,在上个世纪50年代,很多计算机科学家研究的方法为基于人脑的构造上,因此约20年的努力全是白费的。直到70年代,基于数学模型和统计方法的提出,使自然语言处理进入了一个新的境界,并取得了实质性的突破,比如当今的google翻译,百度翻译,都是准确率比较高的翻译平台。甚至google还提出了一种机器同声传译系统。在我国,科大讯飞在自然语言处理这一块做的还是很不错的,本人以前开发过android系统,调用了科大讯飞的语音api,都能够实现比较实际的app。作为学生的我们,会用很重要,但知道为什么会用则更重要,这里吴军博士给出了自然语言处理一般核心思想------隐马尔科夫过程。
早期的自然语言处理的框架图如下:
这种基于文法规则的nlp(Natural Language Processing)显然是行不通的,后来,科学家提出了基于统计模型的nlp,李开复就是在基于统计规则上取得的成就,因此帮助他的导师一起完成的论文获得了计算机界最高奖项—图领奖。
到这里还没有讲述nlp的核心思想,后面的章节会讲,如隐马尔科夫过程那一章,就是讲述nlp的,基于时间序列的随机过程处理,就是构建nlp的大厦,而这却是概率论的重要内容。
因此,个人认为,学习计算机,在天朝,两种技术不可少,一是英语,二是数学,当然了,还有google,但在某国,google不能上,悲催啊。
《数学之美》第二章阅读完毕,下一周第三章。
在计算机被发明之前,不同文明之间的交流通过翻译这一职业进行沟通的。随着计算机的发展,计算机在某些方面做得比人还要好,比如计算。那个时候科学家就开始考虑,能否让计算机能够听懂人类的语言呢?吴军博士给了一个很明确的答案,那就是能!
然而,让计算机能够听懂人类的自然语言可不是一件简单的事情,在上个世纪50年代,很多计算机科学家研究的方法为基于人脑的构造上,因此约20年的努力全是白费的。直到70年代,基于数学模型和统计方法的提出,使自然语言处理进入了一个新的境界,并取得了实质性的突破,比如当今的google翻译,百度翻译,都是准确率比较高的翻译平台。甚至google还提出了一种机器同声传译系统。在我国,科大讯飞在自然语言处理这一块做的还是很不错的,本人以前开发过android系统,调用了科大讯飞的语音api,都能够实现比较实际的app。作为学生的我们,会用很重要,但知道为什么会用则更重要,这里吴军博士给出了自然语言处理一般核心思想------隐马尔科夫过程。
早期的自然语言处理的框架图如下:
这种基于文法规则的nlp(Natural Language Processing)显然是行不通的,后来,科学家提出了基于统计模型的nlp,李开复就是在基于统计规则上取得的成就,因此帮助他的导师一起完成的论文获得了计算机界最高奖项—图领奖。
到这里还没有讲述nlp的核心思想,后面的章节会讲,如隐马尔科夫过程那一章,就是讲述nlp的,基于时间序列的随机过程处理,就是构建nlp的大厦,而这却是概率论的重要内容。
因此,个人认为,学习计算机,在天朝,两种技术不可少,一是英语,二是数学,当然了,还有google,但在某国,google不能上,悲催啊。
《数学之美》第二章阅读完毕,下一周第三章。