深度学习优化方法

深度学习最全优化方法总结比较(SGD,Adagrad,Adadelta,Adam,Adamax,Nadam)

转载自:https://zhuanlan.zhihu.com/p/22252270

SGD
此处的SGD指mini-batch gradient descent,关于batch gradient descent, stochastic gradient descent, 以及 mini-batch gradient descent的具体区别就不细说了。现在的SGD一般都指mini-batch gradient descent。

SGD就是每一次迭代计算mini-batch的梯度,然后对参数进行更新,是最常见的优化方法了。即:

gt=θt1f(θt1) g t = ∇ θ t − 1 f ( θ t − 1 )

Δθt=ηgt Δ θ t = − η ∗ g t

其中, η η 是学习率, gt g t 是梯度

SGD完全依赖于当前batch的梯度,所以\eta可理解为允许当前batch的梯度多大程度影响参数更新

缺点:(正因为有这些缺点才让这么多大神发展出了后续的各种算法)

选择合适的learning rate比较困难
- 对所有的参数更新使用同样的learning rate。对于稀疏数据或者特征,有时我们可能想更新快一些对于不经常出现的特征,对于常出现的特征更新慢一些,这时候SGD就不太能满足要求了

SGD容易收敛到局部最优,并且在某些情况下可能被困在鞍点【原来写的是“容易困于鞍点”,经查阅论文发现,其实在合适的初始化和step size的情况下,鞍点的影响并没这么大。感谢@冰橙的指正】

Momentum
momentum是模拟物理里动量的概念,积累之前的动量来替代真正的梯度。公式如下:

mt=μmt1+gt m t = μ ∗ m t − 1 + g t

Δθt=ηmt Δ θ t = − η ∗ m t

其中, μ μ 是动量因子

特点:

下降初期时,使用上一次参数更新,下降方向一致,乘上较大的 μ μ 能够进行很好的加速
下降中后期时,在局部最小值来回震荡的时候, gradient0μ g r a d i e n t → 0 , μ 使得更新幅度增大,跳出陷阱
在梯度改变方向的时候, μ μ 能够减少更新

总而言之,momentum项能够在相关方向加速SGD,抑制振荡,从而加快收敛

Nesterov
nesterov项在梯度更新时做一个校正,避免前进太快,同时提高灵敏度。
将上一节中的公式展开可得:

Δθt=ημmt1ηgt Δ θ t = − η ∗ μ ∗ m t − 1 − η ∗ g t

可以看出, mt1 m t − 1
并没有直接改变当前梯度 gt g t ,所以Nesterov的改进就是让之前的动量直接影响当前的动量。即:

gt=θt1f(θt1ημmt1) g t = ∇ θ t − 1 f ( θ t − 1 − η ∗ μ ∗ m t − 1 )

mt=μmt1+gt m t = μ ∗ m t − 1 + g t

Δθt=ηmt Δ θ t = − η ∗ m t

所以,加上nesterov项后,梯度在大的跳跃后,进行计算对当前梯度进行校正。如下图:

这里写图片描述

momentum首先计算一个梯度(短的蓝色向量),然后在加速更新梯度的方向进行一个大的跳跃(长的蓝色向量),nesterov项首先在之前加速的梯度方向进行一个大的跳跃(棕色向量),计算梯度然后进行校正(绿色梯向量)

其实,momentum项和nesterov项都是为了使梯度更新更加灵活,对不同情况有针对性。但是,人工设置一些学习率总还是有些生硬,接下来介绍几种自适应学习率的方法

Adagrad
Adagrad其实是对学习率进行了一个约束。即:

nt=nt1+g2t n t = n t − 1 + g t 2

Δθt=ηnt+ϵgt Δ θ t = − η n t + ϵ ∗ g t

此处,对 gt g t 从1到t进行一个递推形成一个约束项 regularizer1tr=1(gr)2+ϵϵ r e g u l a r i z e r , − 1 ∑ r = 1 t ( g r ) 2 + ϵ , ϵ 用来保证分母非0

特点:

前期 gt g t 较小的时候, regularizer较大,能够放大梯度
后期 gt g t 较大的时候,regularizer较小,能够约束梯度
适合处理稀疏梯度

缺点:
由公式可以看出,仍依赖于人工设置一个全局学习率
η η 设置过大的话,会使 regularizer r e g u l a r i z e r 过于敏感,对梯度的调节太大
中后期,分母上梯度平方的累加将会越来越大,使gradient\to0,使得训练提前结束

Adadelta
Adadelta是对Adagrad的扩展,最初方案依然是对学习率进行自适应约束,但是进行了计算上的简化。
Adagrad会累加之前所有的梯度平方,而Adadelta只累加固定大小的项,并且也不直接存储这些项,仅仅是近似计算对应的平均值。即:

nt=νnt1+(1ν)g2t n t = ν ∗ n t − 1 + ( 1 − ν ) ∗ g t 2

Δθt=ηnt+ϵgt Δ θ t = − η n t + ϵ ∗ g t

在此处Adadelta其实还是依赖于全局学习率的,但是作者做了一定处理,经过近似牛顿迭代法之后:

E|g2|t=ρE|g2|t1+(1ρ)g2t E | g 2 | t = ρ ∗ E | g 2 | t − 1 + ( 1 − ρ ) ∗ g t 2

Δxt=t1r=1ΔxrE|g2|t+ϵ Δ x t = − ∑ r = 1 t − 1 Δ x r E | g 2 | t + ϵ

其中,E代表求期望。

此时,可以看出Adadelta已经不用依赖于全局学习率了。

特点:

训练初中期,加速效果不错,很快
训练后期,反复在局部最小值附近抖动

RMSprop
RMSprop可以算作Adadelta的一个特例:

ρ=0.5 ρ = 0.5 时, E|g2|t=ρE|g2|t1+(1ρ)g2t E | g 2 | t = ρ ∗ E | g 2 | t − 1 + ( 1 − ρ ) ∗ g t 2 就变为了求梯度平方和的平均数。

如果再求根的话,就变成了RMS(均方根):

RMS|g|t=E|g2|t+ϵ R M S | g | t = E | g 2 | t + ϵ
此时,这个RMS就可以作为学习率\eta的一个约束:

Δxt=ηRMS|g|tgt Δ x t = − η R M S | g | t ∗ g t
特点:

其实RMSprop依然依赖于全局学习率
RMSprop算是Adagrad的一种发展,和Adadelta的变体,效果趋于二者之间
适合处理非平稳目标
- 对于RNN效果很好

Adam
Adam(Adaptive Moment Estimation)本质上是带有动量项的RMSprop,它利用梯度的一阶矩估计和二阶矩估计动态调整每个参数的学习率。Adam的优点主要在于经过偏置校正后,每一次迭代学习率都有个确定范围,使得参数比较平稳。公式如下:

mt=μmt1+(1μ)gt m t = μ ∗ m t − 1 + ( 1 − μ ) ∗ g t

nt=νnt1+(1ν)g2t n t = ν ∗ n t − 1 + ( 1 − ν ) ∗ g t 2

mt^=mt1μt m t ^ = m t 1 − μ t

nt^=nt1νt n t ^ = n t 1 − ν t

Δθt=mt^nt^+ϵη Δ θ t = − m t ^ n t ^ + ϵ ∗ η

其中, mtnt m t , n t 分别是对梯度的一阶矩估计和二阶矩估计,可以看作对期望 E|gt|E|g2t| E | g t | , E | g t 2 | 的估计; mt^nt^ m t ^ , n t ^ 是对 mtnt m t , n t 的校正,这样可以近似为对期望的无偏估计。
可以看出,直接对梯度的矩估计对内存没有额外的要求,而且可以根据梯度进行动态调整,而 mt^nt^+ϵ − m t ^ n t ^ + ϵ 对学习率形成一个动态约束,而且有明确的范围。

特点:

结合了Adagrad善于处理稀疏梯度和RMSprop善于处理非平稳目标的优点
对内存需求较小
为不同的参数计算不同的自适应学习率
也适用于大多非凸优化
- 适用于大数据集和高维空间

Adamax
Adamax是Adam的一种变体,此方法对学习率的上限提供了一个更简单的范围。公式上的变化如下:

nt=max(νnt1,|gt|) n t = m a x ( ν ∗ n t − 1 , | g t | )

Δx=mt^nt+ϵη Δ x = − m t ^ n t + ϵ ∗ η

可以看出,Adamax学习率的边界范围更简单

Nadam
Nadam类似于带有Nesterov动量项的Adam。公式如下:

gt^=gt1Πti=1μi g t ^ = g t 1 − Π i = 1 t μ i

mt=μtmt1+(1μt)gt m t = μ t ∗ m t − 1 + ( 1 − μ t ) ∗ g t

mt^=mt1Πt+1i=1μi m t ^ = m t 1 − Π i = 1 t + 1 μ i

nt=νnt1+(1ν)g2t n t = ν ∗ n t − 1 + ( 1 − ν ) ∗ g t 2

nt^=nt1νtmt¯=(1μt)gt^+μt+1mt^ n t ^ = n t 1 − ν t m t ¯ = ( 1 − μ t ) ∗ g t ^ + μ t + 1 ∗ m t ^

Δθt=ηmt¯nt^+ϵ Δ θ t = − η ∗ m t ¯ n t ^ + ϵ

可以看出,Nadam对学习率有了更强的约束,同时对梯度的更新也有更直接的影响。一般而言,在想使用带动量的RMSprop,或者Adam的地方,大多可以使用Nadam取得更好的效果。

经验之谈
对于稀疏数据,尽量使用学习率可自适应的优化方法,不用手动调节,而且最好采用默认值
SGD通常训练时间更长,但是在好的初始化和学习率调度方案的情况下,结果更可靠
如果在意更快的收敛,并且需要训练较深较复杂的网络时,推荐使用学习率自适应的优化方法。
Adadelta,RMSprop,Adam是比较相近的算法,在相似的情况下表现差不多。
在想使用带动量的RMSprop,或者Adam的地方,大多可以使用Nadam取得更好的效果

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值