uva 662 (经典DP邮局问题)

这是一篇关于解决经典邮局选址问题的文章,介绍了如何使用动态规划(DP)来找到在一条直线上n个汉堡店建立m个供应站的方案,以最小化所有店铺到供应站的距离和。文章通过分析坐标中点策略,阐述了状态转移方程,并提供了实现代码。
摘要由CSDN通过智能技术生成

题意:

给在一条直线上的n个汉堡店,以及每个汉堡店在x轴上的坐标。

求建m个供应产,使得每个汉堡店到m个供应产的距离和最小。


解析:

经典的邮局dp问题。

首先需要知道到达几个村庄的最小距离和是这几个村庄的坐标中点。

先用一个遍历找出所有i j之间的所有最小距离,然后再dp。

状态转移方程:

dp[ i ] [ j ] = min ( dp[ i ] [ j ] , dp[ i - 1 ] [ k ] + dis[ k + 1 ] [ j ] )

dp[ i ] [ j ] 表示在j个村庄内,建第i个邮局的最小距离。

dp[ i  - 1 ] [ k ] + dis[ k + 1 ] [ j ] 表示得的是在 k + 1 到 j 范围内再建一个邮局的总花费。

路径记录下的是k的值,即为下一段邮局管辖范围内的开头村庄坐标值,再知道此段范围末尾的村庄坐标值,就可以算出邮局的地点。


代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <stack>
#include <vector>
#include <queue>
#include <map>

#define LL long long

using namespace std;

const int inf = 0x3f3f3f3f;
const int maxn = 200 + 10;
const int maxm = 30 + 10;

int dp[maxm][maxn];
int path[maxn][maxn];

int dis[maxn][maxn];
int x[maxn];

void print_path(int i, int j)
{
    if (i <= 0)
        return;
    int u = path[i][j];
    print_path(i - 1, u);
    if (u + 1 == j)
        printf("Depot %d at restaurant %d serves restaurant %d\n", i, (u + 1 + j) >> 1, u + 1);
    else
        printf("Depot %d at restaurant %d serves restaurants %d to %d\n", i, (u + 1 + j) >> 1, u + 1, j);
}

int main()
{
#ifdef LOCAL
    freopen("in.txt", "r", stdin);
#endif // LOCAL
    int n, m;
    int ca = 1;
    while (~scanf("%d%d", &n, &m))
    {
        if (n == 0 && m == 0)
            break;
        memset(dp, inf, sizeof(dp));
        memset(dis, 0, sizeof(dis));
        memset(path, 0, sizeof(path));
        memset(x, 0, sizeof(x));
        for (int i = 1; i <= n; i++)
        {
            scanf("%d", &x[i]);
        }
        for (int i = 1; i <= n; i++)
        {
            for (int j = i; j <= n; j++)
            {
                int mi = (i + j) >> 1;
                for (int k = i; k <= j; k++)
                    dis[i][j] += abs(x[k] - x[mi]);
            }
        }
        //
        for (int i = 1; i <= n; i++)
        {
            dp[1][i] = dis[1][i];
        }
        for (int i = 2; i <= m; i++)//youju
        {
            for (int j = 1; j <= n; j++)//cunzhuan
            {
                for (int k = 1; k < j; k++)
                {
                    int t = dp[i - 1][k] + dis[k + 1][j];
                    if (t < dp[i][j])
                    {
                        dp[i][j] = t;
                        path[i][j] = k;
                    }
                }
            }
        }
        printf("Chain %d\n", ca++);
        print_path(m, n);
        printf("Total distance sum = %d\n\n", dp[m][n]);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值