poj 2480 (积性函数+素因子和)

题意:

给n,求1-n gcd(i,n) 的和。


解析:

gcd(i, m * n) = gcd(i * m) * gcd(i * n),m,n互质,所以gcd是积性函数,所以和函数也是积性函数。

令f(n) = sigma gcd(i,n)。可知f(n) = sum(p * phi(n / p)),p为n的因子。

由此:

f(p^r) = r * (p^r - p ^(r - 1)) + p ^ r.

把n素因子分解,带公式就行了。


代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <stack>
#include <vector>
#include <queue>
#include <map>
#include <climits>
#include <cassert>
#define LL long long

using namespace std;


LL solve(LL n)
{
    LL res = 1;
    for (LL i = 2; i * i <= n; i++)
    {
        LL t = 1;
        LL r = 0;
        while (n % i == 0)
        {

            n /= i;
            t *= i;
            r++;
        }
        res *= (r + 1) * t - t / i * r;
    }
    if (n != 1)
        res *= 2 * n - 1;
    return res;
}

int main()
{
#ifdef LOCAL
    freopen("in.txt", "r", stdin);
#endif // LOCAL
    LL n;
    while (~scanf("%lld", &n))
    {
        printf("%lld\n", solve(n));
    }
    return 0;
}


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值