hdu 1151 二分图最小路径覆盖

本文介绍了一个基于二分图的最大匹配算法解决的城市伞兵部署问题。该问题要求在一张由单行道组成的无环图中找到最少数量的伞兵,使其能够访问到所有路口。文章通过匈牙利算法实现这一目标,并提供了完整的C++代码示例。
摘要由CSDN通过智能技术生成

题意:

有一个城市,所有街道都是单行道,每条街道和两个路口相连,并且是个无环的图。

求最小数量的伞兵,使得这些伞兵可以访问所有路口。


解析:

二分图。

最小路径覆盖 = 顶点数 - 最大匹配。


代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <stack>
#include <vector>
#include <queue>
#include <map>
#include <set>
#include <climits>
#include <cassert>
#define LL long long

using namespace std;
const int inf = 0x3f3f3f3f;
const int maxn = 1000 + 10;
const double eps = 1e-8;
const double pi = acos(-1.0);
const double ee = exp(1.0);

vector<int> g[maxn];
int fr[maxn];
bool vis[maxn];
int n, m;

bool match(int v)
{
    for (int i = 0; i < g[v].size(); i++)
    {
        int u = g[v][i];
        if (!vis[u])
        {
            vis[u] = true;
            if (fr[u] == -1 || match(fr[u]))
            {
                fr[u] = v;
                return true;
            }
        }
    }
    return false;
}

int hungary()
{
    int ret = 0;
    memset(fr, -1, sizeof(fr));
    for (int i = 1; i <= n; i++)
    {
        memset(vis, false, sizeof(vis));
        if (match(i))
        {
            ret++;
        }
    }
    return ret;
}

int main()
{
#ifdef LOCAL
    freopen("in.txt", "r", stdin);
#endif // LOCAl
    int ncase;
    scanf("%d", &ncase);
    while (ncase--)
    {
        int k;
        scanf("%d%d", &n, &k);
        for (int i = 0; i <= n; i++)
        {
            g[i].clear();
        }
        while (k--)
        {
            int fr, to;
            scanf("%d%d", &fr, &to);
            g[fr].push_back(to);
        }
        printf("%d\n", n - hungary());
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值