poj 2987 最大权闭合图 最大流最小割模板

题意:

有一公司,公司里每个人都有自己的贡献值和自己的下属,下属也有下属。

现在要裁员,每裁掉一个人,他的下属也要被裁掉,下属的下属依次类推也要裁掉。

现在问,最小的裁员量和裁员完了以后最大的贡献值。


解析:

http://www.hankcs.com/program/algorithm/poj-2987-firing.html

最大权闭合图。

主要学习这种建图的抽象思维。

                

   ------------------------------->

发现原来的dinic模板算残量的时候有问题,EK的话MLE,加边还是MLE。


代码:

#pragma comment(linker, "/STACK:1677721600")
#include <map>
#include <set>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <climits>
#include <cassert>
#include <iostream>
#include <algorithm>
#define pb push_back
#define mp make_pair
#define LL long long
#define lson lo,mi,rt<<1
#define rson mi+1,hi,rt<<1|1
#define Min(a,b) ((a)<(b)?(a):(b))
#define Max(a,b) ((a)>(b)?(a):(b))
#define mem0(a) memset(a,0,sizeof(a))
#define mem1(a) memset(a,-1,sizeof(a))
#define mem(a,b) memset(a,b,sizeof(a))
#define FIN freopen("in.txt", "r", stdin)
#define FOUT freopen("out.txt", "w", stdout)

using namespace std;
const int mod = 1e9 + 7;
const double eps = 1e-8;
const double ee = exp(1.0);
const int inf = 0x3f3f3f3f;
const int maxn = 100000 + 10;
const double pi = acos(-1.0);
const LL iinf = 0x3f3f3f3f3f3f3f3f;

int readT()
{
    char c;
    int ret = 0,flg = 0;
    while(c = getchar(), (c < '0' || c > '9') && c != '-');
    if(c == '-') flg = 1;
    else ret = c ^ 48;
    while( c = getchar(), c >= '0' && c <= '9') ret = ret * 10 + (c ^ 48);
    return flg ? - ret : ret;
}

struct Edge
{
    int to, rev;
    LL cap;
    Edge(int to, LL cap, int rev):to(to),cap(cap),rev(rev){}
};

vector<Edge> g[maxn];       //图的邻接表
int lev[maxn];              //顶点到源点的距离标号
int iter[maxn];             //当前弧,在其之前的边已经没用了

//向图中加入一条从fr到to的容量为cap的边
void addEdge(int fr, int to, LL cap)
{
    g[fr].pb(Edge(to, cap, g[to].size()));
    g[to].pb(Edge(fr, 0, g[fr].size() - 1));
}

//bfs计算从源点出发的距离标号
void bfs(int s)
{
    mem1(lev);
    queue<int> q;
    lev[s] = 0;
    q.push(s);
    while (!q.empty())
    {
        int v = q.front();
        q.pop();
        for (int i = 0; i < g[v].size(); i++)
        {
            Edge& e = g[v][i];
            if (0 < e.cap && lev[e.to] == -1)
            {
                lev[e.to] = lev[v] + 1;
                q.push(e.to);
            }
        }
    }
}

//dfs找增广路径
LL dfs(int v, int t, LL f)
{
    if (v == t)
        return f;
    int sz = g[v].size();
    for (int& i = iter[v]; i < sz; i++)
    {
        Edge& e = g[v][i];
        if (0 < e.cap && lev[v] < lev[e.to])
        {
            LL d = dfs(e.to, t, Min(f, e.cap));
            if (d)
            {
                e.cap -= d;
                g[e.to][e.rev].cap += d;
                return d;
            }
        }
    }
    return 0;
}

LL maxFlow(int s, int t)
{
    LL flow = 0;
    while (1)
    {
        bfs(s);
        if (lev[t] < 0)
            return flow;
        mem0(iter);
        LL f;
        while ((f = dfs(s, t, inf)) > 0)
            flow += f;
    }
}

int vertexNum, vis[maxn];
//遍历残余网络找点
void minCut(int v)
{
    int sz = g[v].size();
    for (int i = 0; i < sz; i++)
    {
        Edge& e = g[v][i];
        if (!vis[e.to] && 0 < e.cap)
        {
            vis[e.to] = true;
            vertexNum++;
            minCut(e.to);
        }
    }
}

int main()
{
#ifdef LOCAL
    FIN;
#endif // LOCAL
    int n, m;
    while (~scanf("%d%d", &n, &m))
    {
        for (int i = 0; i <= n + 1; i++)
            g[i].clear();

        LL sum = 0;
        int s = 0, t = n + 1;
        for (int i = 1; i <= n; i++)
        {
            int x = readT();
            if (x < 0)
            {
                addEdge(i, t, -x);
            }
            else
            {
                sum += x;
                addEdge(s, i, x);
            }
        }
        for (int i = 1; i <= m; i++)
        {
            int fr = readT();
            int to = readT();
            addEdge(fr, to, inf);
        }
        sum -= maxFlow(s, t);
        vertexNum = 0;
        mem0(vis);
        vis[s] = true;
        minCut(s);

        //-汇点
        printf("%d %lld\n", vertexNum, sum);
    }
    return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值