poj 2112 网络流+二分

题意:

k台挤奶机,c头牛,每台挤奶机可以挤m头牛。

现在给出每只牛到挤奶机的距离矩阵,求最小化牛的最大路程。


解析:

最大值最小化,最小值最大化,用二分来做。

先求出两点之间的最短距离。

然后二分匹配牛到挤奶机的最大路程,匹配中的判断是在这个最大路程下,是否牛的数量达到c只。

如何求牛的数量呢,用网络流来做。

从源点到牛引一条容量为1的边,然后挤奶机到汇点引一条容量为m的边。

然后牛和挤奶机的边连还是不连由匹配中的最大路程来决定,如果距离小于最大路程,则加边。

最后判断是否牛量达到c只,如果达到,则可以缩小最大路程;反之,增大最大路程。


代码:

#pragma comment(linker, "/STACK:1677721600")
#include <map>
#include <set>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <climits>
#include <cassert>
#include <iostream>
#include <algorithm>
#define pb push_back
#define mp make_pair
#define LL long long
#define lson lo,mi,rt<<1
#define rson mi+1,hi,rt<<1|1
#define Min(a,b) ((a)<(b)?(a):(b))
#define Max(a,b) ((a)>(b)?(a):(b))
#define mem0(a) memset(a,0,sizeof(a))
#define mem1(a) memset(a,-1,sizeof(a))
#define mem(a,b) memset(a,b,sizeof(a))
#define FIN freopen("in.txt", "r", stdin)
#define FOUT freopen("out.txt", "w", stdout)

using namespace std;
const int mod = 100000;
const double eps = 1e-8;
const double ee = exp(1.0);
const int inf = 0x3f3f3f3f;
const int maxn = 200 + 30 + 15 + 10;
const double pi = acos(-1.0);
const LL iinf = 0x3f3f3f3f3f3f3f3f;

int readT()
{
    char c;
    int ret = 0,flg = 0;
    while(c = getchar(), (c < '0' || c > '9') && c != '-');
    if(c == '-') flg = 1;
    else ret = c ^ 48;
    while( c = getchar(), c >= '0' && c <= '9') ret = ret * 10 + (c ^ 48);
    return flg ? - ret : ret;
}

/  - maxflow-  //
struct Edge
{
    int to, rev;
    LL cap;
    Edge(int to, LL cap, int rev):to(to),cap(cap),rev(rev) {}
};

vector<Edge> g[maxn];       //图的邻接表
int lev[maxn];              //顶点到源点的距离标号
int iter[maxn];             //当前弧,在其之前的边已经没用了

//向图中加入一条从fr到to的容量为cap的边
void addEdge(int fr, int to, LL cap)
{
    g[fr].pb(Edge(to, cap, g[to].size()));
    g[to].pb(Edge(fr, 0, g[fr].size() - 1));
}

//bfs计算从源点出发的距离标号
void bfs(int s)
{
    mem1(lev);
    queue<int> q;
    lev[s] = 0;
    q.push(s);
    while (!q.empty())
    {
        int v = q.front();
        q.pop();
        for (int i = 0; i < g[v].size(); i++)
        {
            Edge& e = g[v][i];
            if (0 < e.cap && lev[e.to] == -1)
            {
                lev[e.to] = lev[v] + 1;
                q.push(e.to);
            }
        }
    }
}

//dfs找增广路径
LL dfs(int v, int t, LL f)
{
    if (v == t)
        return f;
    int sz = g[v].size();
    for (int& i = iter[v]; i < sz; i++)
    {
        Edge& e = g[v][i];
        if (0 < e.cap && lev[v] < lev[e.to])
        {
            LL d = dfs(e.to, t, Min(f, e.cap));
            if (d)
            {
                e.cap -= d;
                g[e.to][e.rev].cap += d;
                return d;
            }
        }
    }
    return 0;
}

LL maxFlow(int s, int t)
{
    LL flow = 0;
    while (1)
    {
        bfs(s);
        if (lev[t] < 0)
            return flow;
        mem0(iter);
        LL f;
        while ((f = dfs(s, t, inf)) > 0)
            flow += f;
    }
}
/  - maxflow-  //

int matrix[maxn][maxn];
int k, c, m, v;

void floyd()
{
    for (int k = 0; k < v; k++)
    {
        for (int i = 0; i < v; i++)
        {
            for (int j = 0; j < v; j++)
            {
                matrix[i][j] = Min(matrix[i][j], matrix[i][k] + matrix[k][j]);
            }
        }
    }
}

bool ok(int d)
{
    int s = v, t = v + 1;
    for (int i = 0; i < v + 2; i++)
    {
        g[i].clear();
    }
    for (int i = 0; i < k; i++)
    {
        addEdge(i, t, m);
    }
    for (int i = k; i < v; i++)
    {
        addEdge(s, i, 1);
    }
    for (int i = 0; i < k; i++)
    {
        for (int j = k; j < v; j++)
        {
            if (matrix[i][j] <= d)
            {
                addEdge(j, i, 1);
            }
        }
    }
    return maxFlow(s, t) == c;
}

int main()
{
#ifdef LOCAL
    FIN;
#endif // LOCAL
    while (~scanf("%d%d%d", &k, &c, &m))
    {
        v = k + c;
        for (int i = 0; i < v; i++)
        {
            for (int j = 0; j < v; j++)
            {
                int x = readT();
                matrix[i][j] = x ? x : inf;
            }
        }
        floyd();

        int lo = 0, hi = 200 * v;
        for (int i = 0; i < 50; i++)
        {
            int mi = (lo + hi) >> 1;
            if (ok(mi))
                hi = mi;
            else
                lo = mi;
        }
        printf("%d\n", hi);
    }
    return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值