CF#310 div2 D set+pair+贪心

题意

这场比赛的题意都很不好看懂- -。
这题还算是题意好懂得一题。
给n(2 * 10^5)个区间[l, r],给m(2 * 10^5)个桥的长度。
现在要在每个区间之间建桥,桥可以被建的条件是:
设区间1为 [l_1, r_1] < 区间2为[l_2, r_2],桥的长度为len,
那么要求长度一能够得着两个区间,即 len > l_2 - _r1;
二不超过两个区间,即 len < r_2 - l_1。
现在问给定的这些数据,能不能把所有的区间都连起来,如果可以,输出yes并输出方案;反之,no。

解析

因为set的lower_bound用得不熟练,所以就直接用了优先队列,写得不对。
学习了set和pair还有数组组合起来的用法。
这题,首先贪心的规则是:
将所有区间差值,按照大值r_2 - l_1为主键值,小值l_2- r_1为次键值,标号为次次键值,来从小到大排序;这个直接连用俩pair就可以完成:

// long<->short, id
pair< pair < LL, LL >, int> line[maxn];

接着是用set来维护桥,每次找出的是恰好小于当前l_2 - r_1值的桥,判断其是否满足条件,记录答案即可。

// len<->id
set< pair < LL, int > > bridge;

代码

#pragma comment(linker, "/STACK:1677721600")
#include <map>
#include <set>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <climits>
#include <cassert>
#include <iostream>
#include <algorithm>
#define pb push_back
#define mp make_pair
#define LL long long
#define lson lo,mi,rt<<1
#define rson mi+1,hi,rt<<1|1
#define Min(a,b) ((a)<(b)?(a):(b))
#define Max(a,b) ((a)>(b)?(a):(b))
#define mem(a,b) memset(a,b,sizeof(a))
#define FIN freopen("in.txt", "r", stdin)
#define FOUT freopen("out.txt", "w", stdout)
#define rep(i,a,b) for(int i=(a); i<=(b); i++)
#define dec(i,a,b) for(int i=(a); i>=(b); i--)

using namespace std;
const int mod = 1e9 + 7;
const double eps = 1e-8;
const double ee = exp(1.0);
const int inf = 0x3f3f3f3f;
const int maxn = 2e5 + 10;
const double pi = acos(-1.0);
const LL iinf = 0x3f3f3f3f3f3f3f3f;

LL readT()
{
    char c;
    LL ret = 0,flg = 0;
    while(c = getchar(), (c < '0' || c > '9') && c != '-');
    if(c == '-') flg = 1;
    else ret = c ^ 48;
    while( c = getchar(), c >= '0' && c <= '9') ret = ret * 10 + (c ^ 48);
    return flg ? - ret : ret;
}

    //  len<->id
set<pair<LL, int> > bridge;
   // long<->short, id
pair<pair<LL, LL>, int> line[maxn];

int ans[maxn];

int main()
{
#ifdef LOCAL
    FIN;
#endif // LOCAL
    int n = readT();
    int m = readT();
    LL prel, prer;
    rep(i, 0, n - 1)
    {
        LL l = readT();
        LL r = readT();
        if (i != 0)
        {
            line[i - 1] = mp(mp(r - prel, l - prer), i - 1);
        }
        prel = l;
        prer = r;
    }
    sort(line, line + n - 1);
    rep(i, 0, m - 1)
    {
        LL len = readT();
        bridge.insert(mp(len, i));
    }

    rep(i, 0, n - 2)
    {
        set<pair<LL, int> >::iterator it = bridge.lower_bound(mp(line[i].first.second, -1));
        if (it == bridge.end() || it->first > line[i].first.first)
        {
            puts("No");
            return 0;
        }
        ans[line[i].second] = it -> second;
        bridge.erase(it);
    }

    puts("Yes");
    rep(i, 0, n - 2)
        printf("%d ", ans[i] + 1);

    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值