示例代码-协方差,黎曼协方差计算.

7 篇文章 0 订阅
3 篇文章 1 订阅

 
 

前言

\quad 在概率论和统计学中,方差是衡量随机变量或一组数据时离散程度的度量,协方差用于衡量两组数据的总体误差[1,2]。例如:对于任意两组数据 X = [ x 1 , x 2 , . . . , x n ] X =[x_1,x_2,...,x_n] X=[x1,x2,...,xn] Y = [ y 1 , y 2 , . . . , y n ] Y =[y_1,y_2,...,y_n] Y=[y1,y2,...,yn],它们之间的协方差为:

c o v ( X , Y ) = 1 n − 1 ∑ p = 1 n ( x p − x ~ ) ( y p − y ~ ) {\rm cov}(X,Y)= \frac{1}{n-1} \sum_{p=1}^{n} (x_p-{\tilde {x}}) (y_p-{\tilde {y}}) cov(X,Y)=n11p=1n(xpx~)(ypy~)

其中, x ~ = ∑ p = 1 n x p , y ~ = ∑ p = 1 n y p \tilde{x} = \sum_{p=1}^nx_p, \tilde{y} = \sum_{p=1}^ny_p x~=p=1nxp,y~=p=1nyp 为两组离散数值的均值。若 X X X Y Y Y 相等时,那么上式计算的即为方差,由此可见方差是协方差的一种特殊情况。
 

黎曼协方差

\quad 传统协防差计算是面向两个离散值的集合,若是考虑黎曼流形上两个集合,那么上式的计算将不在合适。其中,关键在于黎曼流形上样本点的均值求取,以及当前样本到中心点的偏离。这里,我们以对称正定流形(Symmetric Positive Definite Manifold ,简称SPD流形)为例,对于两个由SPD矩阵组成的集合 X \mathbb{X} X = { X 1 , \{\mathcal{X}_1, {X1, X 2 , \mathcal{X}_2, X2, . . . , ..., ..., X n } \mathcal{X}_n \} Xn} Y \mathbb{Y} Y = { Y 1 , \{\mathcal{Y}_1, {Y1, Y 2 , \mathcal{Y}_2, Y2, . . . , ..., ..., Y n } , \mathcal{Y}_n \}, Yn}, p = 1 , 2 , . . . , n p=1,2,...,n p=1,2,...,n,它们之间的协方差为:

c o v ( X , Y ) = 1 n − 1 ∑ p = 1 n ζ ( X p , E ( X ) ) T   ζ ( Y p , E ( Y ) ) \mathop {\rm cov}(\mathbb{X},\mathbb{Y}) = \frac{1}{n-1}\sum_{p=1}^n\zeta(\mathcal{X}_p,{\rm E}(\mathbb{X}))^T\,\zeta(\mathcal{Y}_p,{\rm E}(\mathbb{Y})) cov(X,Y)=n11p=1nζ(Xp,E(X))Tζ(Yp,E(Y))

其中,相对应与传统的协方差计算,分别有: E ( X ) {\rm E}(\mathbb{X}) E(X) E ( Y ) {\rm E}(\mathbb{Y}) E(Y)为两个集合的黎曼均值 [link] ζ ( X p , E ( X ) ) \zeta(\mathcal{X}_p,{\rm E}(\mathbb{X})) ζ(Xp,E(X)) ζ ( Y p , E ( Y ) ) \zeta(\mathcal{Y}_p,{\rm E}(\mathbb{Y})) ζ(Yp,E(Y))为两个集合中样本到其相应中心的偏离情况,我们称之为黎曼局部差分向量 [link]
\quad 以上,我们不难发现黎曼协方差的关键在于黎曼均值黎曼局部差分向量的计算,它们是我们将传统的协方差计算从欧氏空间扩展到黎曼空间的关键。同理,若你们在完成某些任务或者某些计算时,需要将传统的平均值以及相减操作要扩展到SPD流形,则可以考虑使用黎曼均值黎曼局部差分向量
\quad 相应的,若是对于两组由高斯模型组成的集合,我们也可以考虑以上操作,详细可参考[1]。

 
 
示例代码
 
Github : https://github.com/Kai-Xuan/SPD-OPERATIONS/tree/master/SPD-Metrics/

百度云: https://pan.baidu.com/s/1hPvMsfafGTOnLVOVUXSIYQ 提取码:xv9k
 

如果这个内容对于您的研究工作有帮助,我们将非常感激您可以引用我们的文章:[1]. 

参考:


1. Chen K X, Ren J Y, Wu X J, et al. Covariance Descriptors on a Gaussian Manifold and their Application to Image Set Classification[J]. Pattern Recognition, 2020, 107: 107463. [link]
2. 协方差(百度百科) [link]

  • 2
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值