SparkCore杂记二

本文深入探讨Spark的shuffle过程,包括shuffle write与shuffle read,以及数据倾斜问题。同时,文章详细介绍了RDD的持久化机制,如不同级别的持久化策略、缓存与淘汰策略,并讨论了如何选择合适的持久化方案以优化性能。
摘要由CSDN通过智能技术生成

       这篇博客主要讲解Spark中任务shuffle与persistence, 首先来说说shuffle洗牌,学过hadoop的同学应该都了解mapreduce,每一个mapreduce任务都要经过一次shuffle,简单的理解shuffle就是根据key将数据进行重新分布,这个过程会发生文件IO/网络IO,是比较耗性能的一个操作,并且还有可能产生数据倾斜,简单说一下数据倾斜指每个任务中分配的数据不均匀,一些任务数据量很少执行时间很短,一些数量很多执行时间很长,解决数据倾斜就是尽可能的使每个任务的数据量分布均匀,shuffle包括shuffle write与shuffler read过程,shuffle write将数据按照一定的规则组织写入到内存中,当内存达到一定上限就会写入到磁盘中,shuffle过程通常会产生大量的磁盘文件,shuffle read 指每个task到磁盘文件读取相应的文件,会读取一部分到内存中进行处理,然后读取继续进行处理。Spark中shuffle同样也指数据重分布,在spark中执行reduceByKey/join/groupByKey/repartition等算子操作就会执行shuffle,shuffle过程中key的式如何分布的在上节已经讲到过,主要有HashPartitioner(默认)、RangePartitioner来控制,HashPartitioner会将相同的key分布到同一个分区中,相同key的记录会在同一个分区中执行聚合操作,Spark中shuffle包括两种类型:hash/sort ,二者最主要的区别就是产生中间文件数量的多少,hash类型shuffle中每一个task都会产生下一个stage中task个数的文件数量,经过优化过后的hash shuffle 每一个core(执行多批task) 会产生下一个stage中task个数的文件数量, 而sort 类型的shuffle每个task只有一个磁盘文件与索引文件,索引文件会索引数据文件中数据对应下一个stage的每一个task,从spark1.2开始已经开始使用sort类型的shuffle。由于shuffle是一个比较号性能的算子操作,所以我们应该尽量少使用或者使用比较高性能的算子,使用reduceByKey代替groupBkKey,reduceByKey会在map段进行预聚合操作,而groupByKey不会,这样会减少IO的数据量,使用map+broadcast 代替join ,只适合broadcast 较小的数据量,由于join会产生shuffle ,但是map+b

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值