异构信息网络+推荐===总结

本文介绍了异构信息网络(HIN)的基本概念,重点讨论了元路径(Meta Path)及其在HIN中衡量节点相似度的应用,如PathSim和HeteSim。此外,还探讨了元结构(Meta Structure)的概念,以及如何利用它们增强关系表示和推荐系统的性能。文中提到了一些基于元路径和元结构的推荐方法,如SemRec和Meta-Graph Based Recommendation Fusion,并引用了相关研究者的著作和工作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

关于异构信息网络的基本概念,可以先看看:异构信息网络–基本概念和定义学习笔记

**

一、元路径(Meta Path)

**

- 因为异构信息网络(以后简称为HIN)中包含着更多的节点类型和边的类型,相对于同构网络来说比较复杂,所以Yizhou Sun【1】第一次提出了元路径(meta path)的概念,基于元路径来分析HIN,简单来说元路径就是连接两个节点之间的边类型和节点类型的串联。详细的还是看异构信息网络–基本概念和定义学习笔记

- 基于元路径最基本的两个工作是:
(1)衡量HIN中基于对称元路径的相同类型节点间的相似度方法PathSim【1】(代码python2.7:http://download.csdn.net/download/u013527419/9475257)。
(2)衡量HIN中基于任意元路径的相同/不同类型节点间的相似度方法HeteSim【2】(代码:

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值