当软件开发团队面临快速交付高质量应用程序的压力时,低代码平台为快速发展的业务需求和复杂的集成提供了所需的支持。集成智能自动化测试 (IAT)、智能流程自动化 (IPA) 和机器人流程自动化 (RPA) 解决方案,可以更轻松地适应变化,确保测试和自动化与不断发展的应用程序和流程保持同步。在低代码开发环境中,如图 1 所示,IAT、IPA 和 RPA 可以减少手动工作量,提高 SDLC 和流程自动化中的测试覆盖率、准确性和效率。
图 1.低代码开发环境
将 IAT、IPA 和 RPA 与低代码平台结合使用还可以缩短上市时间、降低成本并提高生产力。IAT、IPA、RPA 和低代码的交集是现代软件开发和流程自动化的范式转变,其影响延伸到专业服务、消费品、银行等行业。
本文将探讨所有三种集成。对于每次集成,我们将强调优点和缺点,探索在决定是否集成时要考虑的因素,展示用例,并突出关键的实现点。所介绍的用例是如何在特定场景中应用这些技术的流行示例。这些用例并不意味着每个集成都仅限于上述域,也不意味着集成不能在同一域中以不同的方式使用。本文探讨的三种集成的灵活性和多功能性允许在不同行业和流程中广泛应用。
具有低代码开发的 IAT
智能自动化测试中的AI驱动测试用例生成可以探索更多的场景、边缘案例和应用状态,从而实现更好的测试覆盖率和更高的应用质量。这在低代码环境中尤其有用,因为在低代码环境中,复杂的集成和快速发展的需求可能会使全面的测试具有挑战性。
通过自动化测试任务,如测试用例生成、执行和维护,IAT可以显著减少所需的手动工作量,从而提高效率并节省成本。这在低代码开发中是有利的,因为在低代码开发中,测试专业知识有限的公民开发人员参与其中,从而最大限度地减少了对专用测试资源的需求。
低代码平台支持快速应用程序开发,但测试可能会成为瓶颈。自动化测试和 IAT 可以提供有关应用程序质量和潜在问题的快速反馈,从而更快地识别和解决缺陷。这可能会加快整个开发和交付周期。它还可能允许组织在保持质量标准的同时利用低代码的速度。
但是,我们需要记住,并非所有低代码平台都可以与所有 IAT 解决方案集成。IAT 解决方案可能需要访问敏感的应用程序数据、日志和其他信息,以训练 AI/ML 模型并生成测试用例。在IAT中AI/ML需要培训和软件工程技能发展的情况下,我们还需要考虑维护和支持以及定制和基础设施等成本。
关于是否将 IAT 与低代码平台集成的决定涉及下表中突出显示的许多因素:
表 1. 将 IAT 与低代码开发集成
何时集成 | 何时不集成 |
---|---|
快速开发至关重要,但只有测试经验有限的公民开发人员才能使用 | 简单的应用程序功能有限,低代码平台已经提供了足够的测试能力 |
基于低代码平台构建的应用程序具有良好的 IAT 集成选项 | 复杂性和学习曲线很高,需要对 AI/ML 有深刻的理解 |
复杂的应用需要全面的测试覆盖率,需要广泛的测试 | 存在兼容性、互操作性和数据孤岛问题 |
频繁的发布周期具有完善的 CI/CD 管道 | 数据安全和法规遵从性是挑战 |
需要加强测试过程的决策 | 有预算限制 |
使用案例:专业服务
低代码平台将用于开发自定义审计应用程序。由于可以集成IAT工具来自动测试这些应用程序,因此专业服务公司将利用IAT来提高其审计和鉴证服务的准确性,速度,效率和有效性。下面的图 2 总结了实施要点:
图2.具有自定义审计应用的低代码开发的 IAT
在这个将IAT与低代码集成的专业服务用例中,还可以为医疗保健或金融等行业开发自定义审计应用程序,在这些行业中,自动化测试可以提高合规性和风险管理。
具有低代码开发的 IPA
智能流程自动化可以通过自动化软件开发和测试生命周期的各个方面来显着提高效率。低代码环境可以从 IPA 的高级 AI 技术中受益,例如机器学习、自然语言处理 (NLP) 和认知计算。这些增强功能使低代码平台能够自动执行更复杂和数据密集型的任务,而不仅仅是简单的基于规则的流程。
IPA 不仅限于简单的基于规则的任务;它结合了认知自动化功能。这使得 IPA 能够处理涉及非结构化数据和决策的更复杂的场景。IPA可以从数据模式中学习,并根据历史数据和趋势做出决策。这对于测试涉及复杂逻辑和可变结果的方案特别有用。例如,IPA 可以通过使用 NLP 和光学字符识别来处理文本文档、图像和电子邮件等非结构化数据。
IPA 可用于自动化复杂的工作流程和决策过程,从而减少人工干预的需要。端到端工作流和业务流程可以自动化,包括审批、通知和升级。基于预定义的标准和实时数据分析,自动化决策可以处理信用评分、风险评估和资格验证等任务,而无需人工参与。借助 IPA,低代码测试可以超越测试应用程序的范围,因为我们可以测试组织不同垂直领域的整个流程。
由于 IPA 可以支持跨垂直行业的广泛集成方案,因此安全性和法规遵从性可能是一个问题。如果低代码平台不能完全支持 IPA 提供的广泛集成,那么我们需要考虑替代方案。基础架构设置、数据迁移、数据集成、许可和定制是所涉及的成本示例。
下表总结了集成 IPA 之前要考虑的因素:
表 2. 将 IPA 与低代码开发集成
何时集成 | 何时不集成 |
---|---|
存在严格的合规性和监管要求,这些要求以适应性强、详细且易于自动化的方式发生变化 | 监管和安全合规框架过于僵化,存在安全/合规差距和潜在的法律问题,导致挑战和不确定性 |
垂直行业存在重复性流程,可以提高效率和准确性 | 没有明确的优化目标;手动流程就足够了 |
快速开发和部署可扩展的自动化解决方案是必要的 | 低代码平台对 IPA 的定制有限 |
可以简化端到端业务流程 | IT 专业知识有限 |
复杂过程优化的决策是必要的 | 初始实施成本高 |
使用案例:消费品
一家领先的消费品公司希望利用 IPA 来加强其供应链管理和业务运营。他们将使用低代码平台来开发供应链应用程序,该平台将可以选择集成IPA工具,以自动化和优化供应链流程。这种整合将使公司能够提高供应链效率,降低运营成本,并缩短产品交付时间。实施要点总结如下图 3:
图3. 为一家消费品公司提供低代码开发的 IPA
这个在消费品行业将 IPA 与低代码集成的示例可以适用于零售或制造业等行业,在这些行业中可以优化库存管理、需求预测和生产调度。
具有低代码开发的 RPA
机器人流程自动化和低代码开发具有互补关系,因为它们可以结合起来增强组织内的整体自动化和应用程序开发能力。例如,RPA 可用于自动执行重复性任务并与各种系统集成。可以利用低代码平台快速构建自定义应用程序和工作流,从而加快上市时间。低代码平台的快速开发能力,结合RPA的自动化能力,可以使组织快速构建和部署应用程序。
通过使用 RPA 自动执行重复性任务并使用低代码平台快速构建自定义应用程序,组织可以显着提高其整体运营效率和生产力。低代码环境中的 RPA 可以最大限度地减少手动工作、缩短开发时间并使公民开发人员能够为应用程序开发做出贡献,从而节省成本。
RPA 和低代码平台都提供可扩展性和灵活性,使组织能够适应不断变化的业务需求,并根据需要扩展其应用程序和自动化流程。RPA 机器人可以动态扩展以处理不同数量的客户查询。在高峰时段,可以部署额外的机器人来管理增加的工作负载,确保一致的服务级别。RPA 工具通常具有跨平台兼容性,允许它们与各种应用程序和系统进行交互,并增强低代码平台的灵活性。
数据敏感性在这里可能是一个问题,因为 RPA 机器人可能会直接访问专有或敏感数据。对于不稳定、难以自动化或不可预测的流程,RPA 可能无法提供预期的收益。RPA 依靠结构化数据和预定义的规则来执行任务。频繁变化、不稳定和非结构化的流程缺乏清晰和一致的重复模式,可能会给 RPA 机器人带来重大挑战。自动化复杂的流程通常涉及多个决策点、异常和依赖关系。虽然 RPA 可以处理一定程度的复杂性,但它并不适合需要深入理解上下文或复杂决策能力的任务。
下表总结了集成 RPA 之前要考虑的因素:
表 3. 将 RPA 与低代码开发集成
何时进行 INTEGRATE | 何时不集成 |
---|---|
通过自动化可以进一步增强现有的系统集成 | 要自动化的任务涉及非结构化数据和复杂的决策 |
在手动处理效率低下的情况下,存在重复性任务和流程 | 快速变化和复杂的流程必须实现自动化 |
通过自动执行结构化和重复性任务的重负载,有望节省成本 | 集成的实施和维护成本很高 |
低代码平台可以利用 RPA 的可扩展性和灵活性 | 缺乏技术专长 |
上市时间很重要 | RPA 机器人在不保护的情况下对敏感数据进行操作 |
使用案例:银行
一家银行组织旨在通过将 RPA 与低代码开发平台集成来简化其数据输入流程,以自动执行重复且耗时的任务,例如表单填写、数据提取以及旧系统和新系统之间的数据传输。该集成有望提高运营效率,减少人为错误,确保数据准确性,并提高客户满意度。此外,它还将使银行能够以更快的速度和可靠性处理更多的客户数据。
低代码平台将提供灵活性,以快速开发和部署针对银行特定需求量身定制的定制应用程序。RPA将处理后端流程的自动化,确保无缝和安全的数据管理。实施要点总结如下图 4:
图4. 为银行组织提供低代码开发的 RPA
在这个将 RPA 与低代码集成的银行示例中,虽然 RPA 用于自动化数据输入和传输等后端流程,但它也可以自动化客户服务交互和贷款处理等前端流程。此外,带有 RPA 的低代码可以应用于保险或电信等领域,以分别自动执行索赔处理和客户入职。
技术整合的价值在于它能够使社会和组织能够在不断变化的环境中发展、保持竞争力和蓬勃发展——这种环境需要创新和生产力来满足市场需求和社会变化。通过采用 IAT、IPA、RPA 和低代码开发,企业可以将敏捷性、效率和创新提升到新的水平。这将使他们能够提供卓越的客户体验,同时推动可持续增长和成功。
随着数字化转型之旅的不断展开,IAT、IPA 和 RPA 与低代码开发的集成将发挥关键作用,并塑造跨行业的软件开发、流程自动化和业务运营的未来。