群体优化算法---鲸鱼优化算法应用于电力系统优化

介绍

鲸鱼优化算法(Whale Optimization Algorithm, WOA)是一种基于鲸鱼行为的智能优化算法,由Seyedali Mirjalili等人于2016年提出。WOA受鲸鱼捕食行为的启发,尤其是座头鲸的气泡网捕食策略,模拟了鲸鱼围绕猎物游动和创造气泡网的过程。该算法在解决各种优化问题中显示出了良好的性能,应用广泛

鲸鱼优化算法的基本原理

WOA主要包括三个阶段:
围绕猎物游动:鲸鱼沿着一种螺旋状路径围绕猎物游动,模拟了座头鲸捕食的行为。
气泡网捕食策略:这是鲸鱼的主要捕食策略,利用气泡网围住猎物。WOA通过不断更新位置来模拟这一过程。
搜索猎物:当无法确定猎物的位置时,鲸鱼会进行广泛搜索,确保不会陷入局部最优解。

主要步骤
初始化:随机生成一群鲸鱼的位置。
计算适应度:评估每只鲸鱼当前位置的适应度。
更新位置:根据捕食策略更新鲸鱼的位置,包括围绕猎物游动和气泡网捕食。
迭代:重复计算适应度和更新位置,直到满足终止条件(如达到最大迭代次数或适应度收敛)。

算法流程图
1.初始化鲸鱼群体和参数。
2.计算每只鲸鱼的适应度。
3.更新位置:
∣ A ∣ < 1 |A| < 1 A<1,则更新为围绕猎物游动。
∣ A ∣ ≥ 1 |A| \geq 1 A1,则进行广泛搜索。
4.检查终止条件:
若满足终止条件,输出最佳解。
否则,返回步骤2。

本文示例

电力经济调度问题涉及到根据负载需求,优化发电机组的输出功率,以最小化总发电成本,同时满足系统的功率平衡和各发电机的运行限制

代码

function WOA_ELD
    % 参数设置
    dim = 6; % 问题的维度(发电机组数量)
    lb = [10, 10, 35, 35, 130, 125]; % 每个发电机组的最小功率输出
    ub = [85, 80, 125, 130, 200, 175]; % 每个发电机组的最大功率输出
    SearchAgents_no = 30; % 搜索代理数量
    Max_iter = 500; % 最大迭代次数
    Pd = 700; % 总负载需求
    
    % 发电成本系数(a, b, c)
    cost_coeff = [0.007, 7, 240; 
                  0.0095, 10, 200; 
                  0.009, 8.5, 220; 
                  0.009, 11, 200; 
                  0.008, 10.5, 220; 
                  0.0075, 12, 120];

    % 初始化鲸鱼群体
    X = initialization(SearchAgents_no, dim, ub, lb);
    Leader_pos = zeros(1, dim); % 领导者的位置
    Leader_score = inf; % 领导者的得分
    
    % 迭代过程
    for t = 1:Max_iter
        a = 2 - t * (2 / Max_iter); % 线性下降的a
        
        for i = 1:size(X, 1)
            % 约束处理
            X(i, :) = max(X(i, :), lb);
            X(i, :) = min(X(i, :), ub);
            
            % 计算适应度
            fitness = calculate_fitness(X(i, :), cost_coeff, Pd);
            
            % 更新领导者
            if fitness < Leader_score
                Leader_score = fitness;
                Leader_pos = X(i, :);
            end
        end
        
        % 更新位置
        for i = 1:size(X, 1)
            r1 = rand(); % r1为[0,1]之间的随机数
            r2 = rand(); % r2为[0,1]之间的随机数
            
            A = 2 * a * r1 - a; % 计算A
            C = 2 * r2; % 计算C
            
            p = rand(); % p为[0,1]之间的随机数
            
            if p < 0.5
                if abs(A) < 1
                    D = abs(C * Leader_pos - X(i, :)); % 计算D
                    X(i, :) = Leader_pos - A * D; % 更新位置
                else
                    rand_leader_index = floor(SearchAgents_no * rand() + 1);
                    X_rand = X(rand_leader_index, :);
                    D = abs(C * X_rand - X(i, :)); % 计算D
                    X(i, :) = X_rand - A * D; % 更新位置
                end
            else
                % 定义b和l
                b = 1; % 螺旋常数
                l = (2 * rand() - 1); % 在[-1, 1]之间的随机数
                distance2Leader = abs(Leader_pos - X(i, :));
                X(i, :) = distance2Leader * exp(b * l) * cos(l * 2 * pi) + Leader_pos;
            end
        end
    end
    
    % 显示结果
    disp(['最佳解:', num2str(Leader_pos)]);
    disp(['最小成本:', num2str(Leader_score)]);
    
    function fitness = calculate_fitness(position, cost_coeff, Pd)
        Ptotal = sum(position);
        if Ptotal ~= Pd
            penalty = 1e10 * abs(Ptotal - Pd);
        else
            penalty = 0;
        end
        fitness = sum(cost_coeff(:, 1) .* position.^2 + cost_coeff(:, 2) .* position + cost_coeff(:, 3)) + penalty;
    end

    function Positions = initialization(SearchAgents_no, dim, ub, lb)
        Boundary_no = size(ub, 2);
        Positions = zeros(SearchAgents_no, dim);
        for i = 1:SearchAgents_no
            for j = 1:dim
                ub_i = ub(j);
                lb_i = lb(j);
                Positions(i, j) = rand() * (ub_i - lb_i) + lb_i;
            end
        end
    end
end

说明

参数设置:定义了发电机组的数量、功率输出上下限、搜索代理数量、最大迭代次数和总负载需求。
初始化:随机初始化鲸鱼群体的位置。
计算适应度:通过计算每个位置的发电成本来评估适应度,并添加功率平衡的惩罚项。
位置更新:根据WOA的捕食策略更新每个鲸鱼的位置。
显示结果:输出最佳解和最小发电成本

效果

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值