BZOJ 1799 self 同类分布(数位dp)

1799: [Ahoi2009]self 同类分布

Time Limit: 50 Sec  Memory Limit: 64 MB
Submit: 1883  Solved: 843
[Submit][Status][Discuss]

Description

给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数。

Input

Output

Sample Input

10 19

Sample Output

3

HINT

【约束条件】1 ≤ a ≤ b ≤ 10^18

Source

Day1

 

 

非常裸的一个数位dp。令dp[len][sum][mod][r]表示长度为len的数字,当前已经有各位数字的和为sum,最后各位数字和为mod,当前数值对mod取模结果为r时的方案数。根据数据范围,我们发现,如果按照这样子开成四维,空间会炸。但是,在实际操作的时候,我们可以通过枚举固定的mod来少掉一维。

接下来考虑转移方程,dp[len][sum][r]= \sum_{i=0}^{up}dp[len-1][sum-i][r],其中sum>i。退出条件的话,当len==0时,当然要求sum要用完等于0,同时余数要为0。按照普通数位dp记忆化搜索的套路去做即可。具体见代码:

#include<bits/stdc++.h>
#define LL long long

using namespace std;

LL dp[20][163][163],ten[19];
int num[20],tot,mod;

LL dfs(int len,int sum,LL r,bool lim)
{
    if (len==0) return sum==0&&r==0;
    if (!lim&&~dp[len][sum][r]) return dp[len][sum][r];
    int up=lim?num[len]:9; LL res=0;
    for(int i=0;i<=up;i++)
    {
        if (sum<i) break;
        res+=dfs(len-1,sum-i,(r*10+i)%mod,lim&&i==up);
    }
    if (!lim) dp[len][sum][r]=res;
    return res;
}

LL cal(LL x)
{
    tot=0;
    if (x==0) return 0;
    while(x)
    {
        num[++tot]=x%10;
        x/=10;
    }
    LL res=0;
    for(int i=1;i<=9*tot;i++)
    {
        memset(dp,-1,sizeof(dp));
        mod=i; res+=dfs(tot,i,0,1);
    }
    return res;
}

int main()
{
    ios::sync_with_stdio(0);
    cin.tie(0); LL n,m;
    ten[0]=1;
    for(int i=1;i<=18;i++)
        ten[i]=ten[i-1]*10LL;
    while(cin>>n>>m)
    {
        cout<<cal(m)-cal(n-1)<<endl;
    }
    return 0;
}

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图求从 $(1,1)$ 到 $(n,n)$ 的所有路径,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值