极验图标识别-推理速度的优化(10ms)

唠叨

奈何市场上的点选模型太贵,那就自己学python开始做模型吧,其实关于目标检测的文章一搜一大堆,从yolov3、v4、v5、vx、v7都有尝试过,不过知识有限,cnn也不懂,也没gpu环境,只能从cpu推理越快越好,业务角度出发,找一个成品的网络,推理速度在自己的接受范围就好,从yolox(.pth/100ms)–>yolox(.onnx/30ms),再到目前使用的yolo-fastestv2(onnx/10ms)
在这里插入图片描述

关于yolo-fastestV2

虽然coco数据集上map只达到了24,但是咱们类别少啊,主要是这个速度是真的香,满足咱们不会手写网络还能快速的要求。
模型更详细的介绍我这样就不复制了,从GitHub上下载代码,项目的README.md里有详细介绍

训练自己的模型

首先准备数据集,数据集的格式README有介绍,如果没有数据集和不知道数据集怎么弄的话,标注工具:labellmg

anchors

配置好train.txt,执行genanchors.py,获取的结果复制到下一

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值