解决方法:找到yolov5-6.0/ultils/loss.py第217行
把indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices
方法1:改成indices.append((b, a, gj.clamp_(0, int(gain[3] - 1)), gi.clamp_(0, int(gain[2] - 1)))),这是使用int() 函数,这种修改将 gain[3] - 1
和 gain[2] - 1
转换为整数,并传递给 clamp_()
方法。
indices.append((b, a, gj.clamp_(0, int(gain[3] - 1)), gi.clamp_(0, int(gain[2] - 1))))
方法2:或者改成indices.append((b, a, gj.clamp_(0, (gain[3] - 1).long()), gi.clamp_(0, (gain[2] - 1).long()))),这是使用.long() 方法,将 gain[3] - 1
和 gain[2] - 1
的计算放在 .long()
方法之后。这样可以确保在 clamp_()
方法中使用正确的整数类型。(gain[3] - 1).long()
:这种写法确保了计算 gain[3] - 1
的结果是一个张量,然后将其转换为长整型张量(long
)。gj.clamp_(0, ...)
和 gi.clamp_(0, ...)
:这样就可以确保 clamp_()
方法中的上限是一个正确的张量类型,从而避免潜在的运行时错误。
indices.append((b, a, gj.clamp_(0, (gain[3] - 1).long()), gi.clamp_(0, (gain[2] - 1).long())))
原因分析:indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1)))
的主要目的是将特定的值添加到 indices
列表中,其中 gj
和 gi
是张量(tensor),而 gain
是一个包含浮点数的张量或数组。
- 类型一致性:您需要确保在添加索引时,所有值的类型一致,以避免运行时错误。
long
和int
是两种常用的整型,但在 PyTorch 中,张量的类型必须与期望的类型匹配。 - 性能考虑:在训练期间,尤其是在大规模数据处理时,类型转换可能会引入不必要的性能开销。因此,确保在适当的位置进行转换是很重要的。