稀疏表示与非负矩阵分解(4)-轴承故障振动信号的时频谱的非负矩阵分解

本文介绍了非负矩阵分解(NMF)的概念及其在振动信号时频谱分析中的应用。通过文献【3】解读,展示了SMNMF方法如何利用图的半监督学习进行层次故障属性表示,提高航空发动机轴承和柴油发动机故障诊断的准确性。虽然SMNMF存在迭代过程的局部最优解和处理数据量有限的问题,但其在故障位置和尺寸的区分上表现出良好的效果。
摘要由CSDN通过智能技术生成

1. 什么是非负矩阵分解

非负矩阵分解(Nonnegative Matrix Factorization),简称NMF,是由Lee和Seung于1999年在自然杂志上提出的一种矩阵分解方法 [1] ,它使分解后的所有分量均为非负值(要求纯加性的描述),并且同时实现非线性的维数约减。NMF已逐渐成为信号处理、生物医学工程、模式识别、计算机视觉和图像工程等研究领域中最受欢迎的多维数据处理工具之一。

2. 应用场景

因为纯加性的和稀疏的描述能使对数据的解释变得方便(少量活跃的分量使数据的组成方式变得清晰)与合理(许多物理信号中不可能存在负饷成分),还因为相对稀疏性的表示方式能在一定程度上抑制由外界变化(如:部分遮挡、光照变化和物体的旋转等)给特征提取带来的不利影响,所以NMF已逐渐成为信号处理、生物医学工程、模式识别、计算机视觉和图像工程等研究领域中最受欢迎的多维数据处理工具之一。
具体说,它日前已被应用到文本分析与聚类、数字水印、人脸检测与识别、图像检索、图像复原、语言建模、声源分类、音乐信号分析与乐器识别、盲信号分离、网络安全、基因及细胞分析等的研究中。

3. 振动信号时频谱的非负矩阵分解

以这篇半监督多层属性表示学习【3】为例子,讲一讲NMF在振动信号处理上的作用。

3.1 文献【3】解读-主要内容创新点

  • 摘要
作为一种重要的身份认证的手段,人脸识别已经广泛地应用于管理、安全等各个领域。人脸识别的一个关键性的问题是特征抽取,即如何从众多的特征中寻找最有效的特征。子空间分析法是一种有效的特征抽取方法,而本文所研究讨论的非负矩阵分解(Non-negative Matrix Factorization, NMF)具有一些独特的优点,成为构建特征子空间的一种有效的方法。 非负矩阵分解是一种新的矩阵分解方法,它将一个非负矩阵分解为左右两个非负矩阵的乘积。由于分解前后的矩阵中仅仅包含非负元素,因此原来矩阵中的列向量可解释为对左矩阵中所有列向量(称基向量)的加权和;而权重系数为右矩阵中对应列向量中的元素。这种基于基向量组合的表示形式具有直观的语义解释,反映了人们思维中局部构成整体的概念。与一般矩阵分解方法相比,NMF具有其独特的优点。例如实现起来比较简单,分解的形式和结果具有实际的物理意义等。典型的非监督学习算法,如主分量分析(PCA)、矢量量化(VQ)、独立分量分析(ICA)、因子分析(FA)等,均可以理解为对原始数据矩阵在一定条件限制下进行分解。本文的非负矩阵分解(NMF)算法与上述算法模型类似,是国际上新近提出的一种矩阵分解方法。与其他方法相比,NMF特殊之处在于其对于矩阵分解过程的非负限制,这会得到原始数据基于部分的表示,从而能更好的反映原始数据的局部特征,NMF的这一特性使得其可在诸多领域的应用得到很好的效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Robo-网络矿产提炼工

你的鼓励将是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值