非负矩阵分解
1. 什么是非负矩阵分解
非负矩阵分解(Nonnegative Matrix Factorization),简称NMF,是由Lee和Seung于1999年在自然杂志上提出的一种矩阵分解方法 [1] ,它使分解后的所有分量均为非负值(要求纯加性的描述),并且同时实现非线性的维数约减。NMF已逐渐成为信号处理、生物医学工程、模式识别、计算机视觉和图像工程等研究领域中最受欢迎的多维数据处理工具之一。
2. 应用场景
因为纯加性的和稀疏的描述能使对数据的解释变得方便(少量活跃的分量使数据的组成方式变得清晰)与合理(许多物理信号中不可能存在负饷成分),还因为相对稀疏性的表示方式能在一定程度上抑制由外界变化(如:部分遮挡、光照变化和物体的旋转等)给特征提取带来的不利影响,所以NMF已逐渐成为信号处理、生物医学工程、模式识别、计算机视觉和图像工程等研究领域中最受欢迎的多维数据处理工具之一。
具体说,它日前已被应用到文本分析与聚类、数字水印、人脸检测与识别、图像检索、图像复原、语言建模、声源分类、音乐信号分析与乐器识别、盲信号分离、网络安全、基因及细胞分析等的研究中。
3. 振动信号时频谱的非负矩阵分解
以这篇半监督多层属性表示学习【3】为例子,讲一讲NMF在振动信号处理上的作用。
3.1 文献【3】解读-主要内容创新点
- 摘要