目标
通过这篇文章将会了解一下知识:
●创建tracker对象
●使用roiSelector函数的功能,从指定的图像中选择ROI
●在图像中跟踪特定的区域
代码
#include <opencv2/core/utility.hpp>
#include <opencv2/tracking.hpp>
#include <opencv2/videoio.hpp>
#include <opencv2/highgui.hpp>
#include <iostream>
#include <cstring>
using namespace std;
using namespace cv;
int main( int argc, char** argv ){
// show help
if(argc<2){
cout<<
" Usage: tracker <video_name>\n"
" examples:\n"
" example_tracking_kcf Bolt/img/%04d.jpg\n"
" example_tracking_kcf faceocc2.webm\n"
<< endl;
return 0;
}
// declares all required variables
Rect2d roi;
Mat frame;
// create a tracker object
Ptr<Tracker> tracker = Tracker::create( "KCF" );
// set input video
std::string video = argv[1];
VideoCapture cap(video);
// get bounding box
cap >> frame;
roi=selectROI("tracker",frame);
//quit if ROI was not selected
if(roi.width==0 || roi.height==0)
return 0;
// initialize the tracker
tracker->init(frame,roi);
// perform the tracking process
printf("Start the tracking process, press ESC to quit.\n");
for ( ;; ){
// get frame from the video
cap >> frame;
// stop the program if no more images
if(frame.rows==0 || frame.cols==0)
break;
// update the tracking result
tracker->update(frame,roi);
// draw the tracked object
rectangle( frame, roi, Scalar( 255, 0, 0 ), 2, 1 );
// show image with the tracked object
imshow("tracker",frame);
//quit on ESC button
if(waitKey(1)==27)break;
}
return 0;
}
解析
1. 设置输入视频
if(argc<2){
cout<<
" Usage: tracker <video_name>\n"
" examples:\n"
" example_tracking_kcf Bolt/img/%04d.jpg\n"
" example_tracking_kcf faceocc2.webm\n"
<< endl;
return 0;
在该程序中,可以将视频或者多个图像作为程序的输入。如help,应将视频作为输入,如果要将图像列表作为输入,则图像的格式要用4位数字编号(例如文件命名将为0001.jpg,0002.jpg等)。
视频可在 https://github.com/Itseez/opencv_extra/tree/master/testdata/cv/tracking 里寻找。
2.声明需要的变量
Rect2d roi;
Mat frame;
roi:记录跟踪对象的边界框,值通过tracker进行更新。
frame:保存输入的视频或图像列表的每一帧图像信息。
3.创建跟踪对象
Ptr<Tracker> tracker = Tracker::create( "KCF" );
有5种跟踪算法可以选择:
- MIL
- BOOSTING
- MEDIANFLOW
- TLD
- KCF
每种算法都有各自的优势和劣势,请参照文档tracker了解更多的信息。
4.选择跟踪目标
roi=selectROI("tracker",frame);
selectROI功能:通过GUI选择跟踪对象的边界框,默认的参数是从框的中心点开始,并在中间显示十字。更多信息请参考cv::selectROI 。
5.跟踪目标初始化
tracker->init(frame,roi);
对tracker进行初始化,检查跟踪边框的大小是否无效,避免初始化过程失败。
6.跟踪目标更新
tracker->update(frame,roi);
执行物体跟踪,并将结果传给roi。