【ML】斯坦福Machine Learning反向传播(Backpropagation)的数学推导

疫情在家闲着没事把斯坦福Andrew Ng的机器学习里面的数学公式都推导了一遍。其中我发现视频中反向传播的数学跳过了一些步骤且所用的数学符号跟其他地方不太一样。今天来分享一下视频中反向传播的数学推导。如果你喜欢看更直观的视频推导,请移步这里:B站:Youtube:原视频中介绍反向传播的有这两页:有没有一种好像看懂又好像有点迷糊的感觉?我反正是的。。于是经过仔细看了之后我把我的纠结总结成了下面5个问题:1. 为什么?2. 为什么下面一个视频内容说,但是却从...
摘要由CSDN通过智能技术生成

疫情在家闲着没事把斯坦福Andrew Ng的机器学习里面的数学公式都推导了一遍。其中我发现视频中反向传播的数学跳过了一些步骤且所用的数学符号跟其他地方不太一样。今天来分享一下视频中反向传播的数学推导。

如果你喜欢看更直观的视频推导,请移步这里:

B站: https://www.bilibili.com/video/BV1GK4y1s76c/

Youtube: https://www.youtube.com/watch?v=9OzLcgy1bjs

 

原视频中介绍反向传播的有这两页:

有没有一种好像看懂又好像有点迷糊的感觉?我反正是的。。于是经过仔细看了之后我把我的纠结总结成了下面5个问题:

1. 为什么 g'(z^{(3)}) = a^{(3)}.*(1-a^{(3)}) ?

2. 为什么下面一个视频内容说 \delta_{i}^{(l+1)}=\frac{\partial J}{\partial z_{i}^{(l+1)}} ,但是却从 \delta^{(4)} = a^{(4)} - y 开始推导。这样的简化可以吗?

3. 就算2是可以的,那为什么 \delta^{(3)} = (\theta^{(3)})^{T}\delta^{(4)}.*g'(z^{(3)}) ?

4. 为什么 \frac{\partial}{\partial \theta_{ij}^{(l)}}J(\theta) = a_j^{(l)}\delta_{i}^{(l+1)} ?

5. 为什么 \frac{\partial}{\partial\theta_{ij}^{l}}J(\theta) = D_{ij}^{(l)} ?

推导之前我们先来看看一些基本定义:

a_{j}^{(l)} : 第l层的第j个node的输出

  • 30
    点赞
  • 36
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
反向传播算法Backpropagation)是一种用于训练神经网络的常见优化算法。它通过计算损失函数相对于每个参数的梯度,并使用梯度下降来更新参数。下面我将给出反向传播算法的公式推导及示例代码。 1. 反向传播算法公式推导: 首先,定义神经网络的损失函数为L,该函数是由网络输出和真实标签之间的差异计算得出。假设神经网络有多个隐藏层,每个隐藏层的参数为W和b。 1.1 前向传播: 首先,我们通过前向传播计算每一层的输出值。假设输入为x,第l层的输出为a[l],则有: a = x z[l] = W[l] * a[l-1] + b[l] a[l] = g(z[l]) 其中,g()是激活函数。 1.2 反向传播: 接下来,我们需要计算损失函数相对于每个参数的梯度,然后使用梯度下降更新参数。假设我们有L层神经网络,则有以下公式: 输出层的梯度: dz[L] = dL / da[L] * g'(z[L]) 隐藏层的梯度: dz[l] = (W[l+1]的转置 * dz[l+1]) * g'(z[l]) 参数梯度: dW[l] = dz[l] * a[l-1的转置] db[l] = dz[l] 更新参数: W[l] = W[l] - learning_rate * dW[l] b[l] = b[l] - learning_rate * db[l] 其中,dL / da[L]是损失函数对输出层输出的导数,g'()是激活函数的导数。 2. 反向传播算法示例代码: 下面是一个使用反向传播算法进行训练的示例代码: ```python # 假设网络有三个隐藏层 hidden_layers = [10, 20, 30] output_size = 2 # 初始化参数 parameters = {} layers_dims = [input_size] + hidden_layers + [output_size] L = len(layers_dims) - 1 for l in range(1, L + 1): parameters['W' + str(l)] = np.random.randn(layers_dims[l], layers_dims[l-1]) * 0.01 parameters['b' + str(l)] = np.zeros((layers_dims[l], 1)) # 前向传播 def forward_propagation(X, parameters): caches = [] A = X for l in range(1, L): Z = np.dot(parameters['W' + str(l)], A) + parameters['b' + str(l)] A = sigmoid(Z) cache = (Z, A) caches.append(cache) Z = np.dot(parameters['W' + str(L)], A) + parameters['b' + str(L)] AL = softmax(Z) cache = (Z, AL) caches.append(cache) return AL, caches # 反向传播 def backward_propagation(AL, Y, caches): grads = {} dZ = AL - Y m = AL.shape[1] grads['dW' + str(L)] = 1/m * np.dot(dZ, caches[-1][1].T) grads['db' + str(L)] = 1/m * np.sum(dZ, axis=1, keepdims=True) for l in reversed(range(1, L)): dA_prev = np.dot(parameters['W' + str(l+1)].T, dZ) dZ = dA_prev * sigmoid_derivative(caches[l-1][0]) grads['dW' + str(l)] = 1/m * np.dot(dZ, caches[l-1][1].T) grads['db' + str(l)] = 1/m * np.sum(dZ, axis=1, keepdims=True) return grads # 参数更新 def update_parameters(parameters, grads, learning_rate): for l in range(1, L+1): parameters['W' + str(l)] -= learning_rate * grads['dW' + str(l)] parameters['b' + str(l)] -= learning_rate * grads['db' + str(l)] return parameters # 训练模型 def train_model(X, Y, learning_rate, num_iterations): for i in range(num_iterations): AL, caches = forward_propagation(X, parameters) cost = compute_cost(AL, Y) grads = backward_propagation(AL, Y, caches) parameters = update_parameters(parameters, grads, learning_rate) if i % 100 == 0: print("Cost after iteration {}: {}".format(i, cost)) return parameters # 使用示例 parameters = train_model(X_train, Y_train, learning_rate=0.01, num_iterations=1000) ``` 这是一个简单的反向传播算法示例代码,其中的sigmoid()、softmax()、sigmoid_derivative()和compute_cost()函数需要根据具体情况自行实现。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值