转自:https://blog.csdn.net/liumangmao1314/article/details/54179526
移动最小二乘法(MLS)曲线曲面拟合
曲线曲面拟合有很多种方法,Beizer,B样条等,曲面拟合移动最小二乘法是一个很好的选择,本文会详细讲解一下移动最小二乘法方法拟合曲面,并给出C++代码实现。
本文首先是最小二乘法的分析,然后是画曲面曲线图。
目录
用 [TOC]
来生成目录:
MLS的讲解
移动最小二乘法是在最小二乘法基础上加以改进的,添加了权函数等,具体的可以参考论文,“移动最小二乘法论文”链接,这篇论文对MLS讲解的很详细,最后还给出了程序设计思路。我做一点点说明,论文中的矩阵A的写法欠妥,其他关于移动最小二乘法研究中还有另外一种写法:,这里的B对应论文中的P,这点要注意,这样的话A就是一个矩阵。如果是线性基的二维曲线,矩阵A就是:
,依次类推,其他的可以详看论文。
MLS代码块
代码的话我是根据论文中提供的程序设计,再结合一些网上的资料编写出来的,编程语言是C++;当然我也编写了python,应该是先编python,再编的C++。原因是python中可以加载一个矩阵运算库,C++中没有矩阵运算,要自己编写库,大家可以参考我这篇博客,介绍了矩阵运算链接。但是后来实验发现,python跑起来很费时间,C++只需它的一半的时间久跑完了,需要python代码也可以私信我,这里就不贴了。哦,对了,代码是包含很多自定义函数和变量,大家不要瞎贴代码,对照那篇论文的程序设计思路一下子就懂了,话不多说,上代码:
//移动最小二乘法的具体计算过程,参照论文“基于移动最小二乘法的曲线曲面拟合”,AB矩阵参照论文“移动最小二乘法的研究”
int MLS_Calc(int x_val,int y_val,float x[],float y[],float z[])
{
int max_delta=max_x-min_x;//区域半径
float p[M][N]={0};
float sumf[N][N]={0};
float w[M]={0};
for(int j=0;j<M;j++)//求w
{
float s=fabs((x[j]-x_val))/max_delta;
if(s<=0.5)
w[j]=2/3.0-4*s*s+4*s*s*s;
else
{
if(s<=1)
w[j]=4/3.0-4*s+4*s*s-4*s*s*s/3.0;
else
w[j]=0;
}
p[j][0]=1;//每个采样点计算基函数
p[j][1]=x[j];
p[j][2]=y[j];
p[j][3]=x[j]*x[j];
p[j][4]=x[j]*y[j];
p[j][5]=y[j]*y[j];
}
f(w,x,y,sumf,p);//计算得出A矩阵
float p1[N];
Matrix A=Trans_Matrix(sumf,N);
Matrix A_1=m_c.Matrix_copy(&A);
m_c.Matrix_inv(&A_1);//求A矩阵的逆A_1
Matrix B(N,1);//求矩阵B,N行M列
B.init_Matrix();
for(int j=0;j<M;j++)//求得B矩阵的每列
{
p1[0]=1*w[j];
p1[1]=x[j]*w[j];
p1[2]=y[j]*w[j];
p1[3]=x[j]*x[j]*w[j];
p1[4]=x[j]*y[j]*w[j];
p1[5]=y[j]*y[j]*w[j];
Matrix P=Trans_Matrix_One(p1,N);//数组P1转成1行N列的P矩阵
if(j==0)//第一列直接赋值
{
for(int i=0;i<N;i++)
B.write(i,0,p1[i]);
}
else
{
m_c.Matrix_trans(&P);//矩阵转置,P转为N行1列矩阵
m_c.Matrix_addCols(&B,&P);//矩阵B列附加,形成N行M列矩阵
}
P.free_Matrix();
}
float D[N]={1,x_val,y_val,x_val*x_val,x_val*y_val,y_val*y_val};
Matrix D1=Trans_Matrix_One(D,N);//转成1行N列矩阵
Matrix D_A1_mul(1,N);//定义矩阵并初始化相乘的结果矩阵,1行N列
D_A1_mul.init_Matrix();
if(m_c.Matrix_mul(&D1,&A_1,&D_A1_mul)==-1)
cout<<"矩阵有误1!";//1行N列矩阵乘以N行N列矩阵得到结果为1行N列
Matrix D_A1_B_mul(1,M);//定义矩阵并初始化相乘的结果矩阵,1行M列
D_A1_B_mul.init_Matrix();
if(m_c.Matrix_mul(&D_A1_mul,&B,&D_A1_B_mul)==-1)
cout<<"矩阵有误2";//1行N列矩阵乘以N行M列矩阵得到记过矩阵为1行M列
Matrix z1=Trans_Matrix_One(z,M);//将数组z转换成1行M列矩阵
m_c.Matrix_trans(&z1);//转置得到M行1列矩阵
Matrix Z(1,1);//得到矩阵结果,1行1列
Z.init_Matrix();
if(m_c.Matrix_mul(&D_A1_B_mul,&z1,&Z)==-1)
cout<<"矩阵有误3!";//1行M列矩阵乘以M行1列矩阵得到1行1列矩阵,即值Z
float z_val=Z.read(0,0);
if(z_val>255)
z_val=255;
if(z_val<0)
z_val=0;
A.free_Matrix();
A_1.free_Matrix();
B.free_Matrix();
D1.free_Matrix();
D_A1_mul.free_Matrix();
D_A1_B_mul.free_Matrix();
z1.free_Matrix();
Z.free_Matrix();
return (int)z_val;
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
画曲线曲面
跑一个程序能看得到结果心里是很开心的,非常有成就感。想看到拟合结果,曲线C++可以画出来,具体可以参考C++画曲线链接,曲面的话matlab是不错选择,但是软件太大了,python也是可以画曲面的,网上一搜一大堆,着了就不给链接了,网上很多,参考综合。