三维重建
文章平均质量分 87
云初
这个作者很懒,什么都没留下…
展开
-
基于最小二乘法估计点云的曲面法向量
转自:https://blog.csdn.net/lming_08/article/details/21171491之前对PCL库计算三维点云数据的曲面法向量有过介绍,点云的曲面法向量估计,PCL库是采用主成份分析方法的,近几天通过理论推导发现最小二乘法应该也能计算曲面法向量。首先介绍下其理论知识。估计某个点的法向量,可以类似于点云的曲面法向量估计,将该点附近K近邻的点近似在一个局部平面上,之后就...转载 2018-04-19 14:17:45 · 1943 阅读 · 0 评论 -
matlab里点云的读入显示和保存
点云的读入pcread和importdata函数完成了这个功能。pcreadptCloud = pcread(filename) 从PLY、PCD读取指定路径的点云。反回一个pointCloud对象。importdata像他的名字 导入数据,并不是特指点云文件,可以是数组等,然后进一步处理成点云。这个以后再说。点云的显示pcshow 在坐标系中绘制三维点云。pcs...转载 2018-09-27 14:05:52 · 3308 阅读 · 0 评论 -
pcl常用小知识
转自:https://segmentfault.com/a/1190000007125502时间计算pcl中计算程序运行时间有很多函数,其中利用控制台的时间计算是:首先必须包含头文件 #include <pcl/console/time.h>,其次,pcl::console::TicToc time; time.tic(); +程序段 + cout<<time.t...转载 2018-10-08 21:10:58 · 215 阅读 · 0 评论 -
[PCL]2 点云法向量计算NormalEstimation
参考:http://www.cnblogs.com/yhlx125/p/5137850.html 从GitHub的代码版本库下载源代码https://github.com/PointCloudLibrary/pcl,用CMake生成VS项目,查看PCL的源码位于pcl_features项目下1.Feature类:template <typename PointInT, typen...转载 2018-10-15 20:56:59 · 1888 阅读 · 0 评论 -
点云的曲面法向量估计(此例输出点云法向信息,没可视化)(2018.10.15)
表面法线是几何体表面的重要属性,在很多领域都有大量应用,例如:在进行光照渲染时产生符合可视习惯的效果时需要表面法线信息才能正常进行,对于一个已知的几何体表面,根据垂直于点表面的矢量,因此推断表面某一点的法线方向通常比较简单。然而,由于我们获取的点云数据集在真实物体的表面表现为一组定点样本,这样就会有两种解决方法:使用曲面重建技术,从获取的点云数据集中得到采样点对应的曲面,然后从曲面模型中计算表...转载 2018-10-15 22:03:16 · 918 阅读 · 0 评论 -
pcl计算样点法向并显示(2018.10.15)
利用最小二乘法估计样点表面法向,并显示#include <pcl/point_types.h>#include <pcl/io/pcd_io.h>#include <pcl/kdtree/kdtree_flann.h>#include <pcl/features/normal_3d.h>#include <pcl/surface/...转载 2018-10-15 22:05:38 · 644 阅读 · 0 评论 -
PCL中点云BoundingBox包围盒绘制(基于PCA)
!!!实现环境:pcl1.8.0+vs2015+win10大致过程:1、利用PCA主元分析法获得点云的三个主方向,获取质心,计算协方差,获得协方差矩阵,求取协方差矩阵的特征值和特长向量,特征向量即为主方向。 Eigen::Vector4f pcaCentroid; pcl::compute3DCentroid(*cloud, pcaCentroid); ...转载 2018-10-09 14:06:49 · 5072 阅读 · 2 评论 -
PCL ——最小包围盒(画出了最小包围盒并求出顶点坐标)
PCL ——最小包围盒2018年09月21日 15:31:01 不懂音乐的欣赏者 阅读数:35 标签: PCL包围盒外接矩形最小矩形收起个人分类: PCL1.包围盒简介 包围盒也叫外接最小矩形,是一种求解离散点集最优包围空间的算法,基本思想是用体积稍大且特性简单的几何体(称为包围盒)来近似地代替复杂的几何对象。 常见的包围盒算法有AABB包围盒、包围球、方向包围盒OBB以及固...转载 2018-10-09 15:01:10 · 16484 阅读 · 22 评论 -
win10_VS2015属性管理器配置PCL1.8.0
本文以win10系统VS2015x64和pcl1.8.0x64为例。首先,新建一项目,一般的配置方法需要在每次新建项目时重复设置。这里使用属性管理器新建一属性表,在属性表里配置各参数,保存属性表,以后新建项目直接添加已有的属性表即可。分享下pcl1.8.0安装包:百度网盘链接:https://pan.baidu.com/s/1yNI9ygPfAExuijRQpuRycw 密码:yell...原创 2018-08-27 15:29:48 · 2262 阅读 · 0 评论 -
移动最小二乘法(MLS)曲线曲面拟合C++代码实现
转自:https://blog.csdn.net/liumangmao1314/article/details/54179526移动最小二乘法(MLS)曲线曲面拟合曲线曲面拟合有很多种方法,Beizer,B样条等,曲面拟合移动最小二乘法是一个很好的选择,本文会详细讲解一下移动最小二乘法方法拟合曲面,并给出C++代码实现。 本文首先是最小二乘法的分析,然后是画曲面曲线图。目录用 [TOC]来生成目录...转载 2018-06-27 14:42:42 · 4563 阅读 · 1 评论 -
再谈协方差矩阵之主成分分析
转自:http://pinkyjie.com/2011/02/24/covariance-pca/自从上次谈了协方差矩阵之后,感觉写这种科普性文章还不错,那我就再谈一把协方差矩阵吧。上次那篇文章在理论层次介绍了下协方差矩阵,没准很多人觉得这东西用处不大,其实协方差矩阵在好多学科里都有很重要的作用,比如多维的正态分布,再比如今天我们今天的主角——主成分分析(Principal Component A...转载 2018-04-28 15:43:46 · 1951 阅读 · 0 评论 -
PCL: Surface模块之Moving Least Squares(移动最小二乘法)
转自:https://blog.csdn.net/u012337034/article/details/37534869参考文献: 关于此类的详细信息和学术上的理论推导大家可以查看Marc Alexa的文章“Computing and Rendering Point Set Surfaces”。用法小结: 虽说此类放在了Surfac转载 2018-04-19 14:26:23 · 6029 阅读 · 1 评论 -
点云相关学习总结一——估计一个点云的表面法线
参考:http://www.pointclouds.org/documentation/tutorials/normal_estimation.php转自:https://blog.csdn.net/zhenxin066/article/details/38794195说明:1)本文的内容部分来源于网络上,部分来自本人自己的理解,总结,在这里写出来没有任何商业目的,仅供交流、学习之用,引用别人的,...转载 2018-04-19 14:32:11 · 1175 阅读 · 0 评论 -
PCA算法是怎么跟协方差矩阵/特征值/特征向量勾搭起来的
转自:https://www.cnblogs.com/dengdan890730/p/5495078.htmlPCA算法是怎么跟协方差矩阵/特征值/特征向量勾搭起来的?PCA, Principle Component Analysis, 主成份分析, 是使用最广泛的降维算法.......(关于PCA的算法步骤和应用场景随便一搜就能找到了, 所以这里就不说了. )假如你要处理一个数据集, 数据集中的...转载 2018-04-19 16:45:29 · 413 阅读 · 0 评论 -
最小二乘法平面方程拟合计算, 点云法向量估算
转自:https://blog.csdn.net/z444_579/article/details/50039771设有n个数据点Pi(xi,yi,zi).假设平面方程为:a*x+b*y+c*z+d=0,其中a、b、c、d为待定系数a、b、c不能同时为0.显然,a*x+b*y+c*z+d=0与k*a*x+k*b*y+k*c*z+k*d=0(k≠0)表示同一个平面.故,如d不为0,可通过把方程两边同...转载 2018-04-28 15:29:47 · 6921 阅读 · 2 评论 -
点云的曲面法向量估计
转自:点云的曲面法向量估计表面法线是几何体表面的重要属性,在很多领域都有大量应用,例如:在进行光照渲染时产生符合可视习惯的效果时需要表面法线信息才能正常进行,对于一个已知的几何体表面,根据垂直于点表面的矢量,因此推断表面某一点的法线方向通常比较简单。然而,由于我们获取的点云数据集在真实物体的表面表现为一组定点样本,这样就会有两种解决方法:使用曲面重建技术,从获取的点云数据集中得到采样点对应的曲面,...转载 2018-04-28 15:32:00 · 4447 阅读 · 0 评论 -
主成分分析(PCA)原理总结
转自:http://www.cnblogs.com/pinard/p/6239403.html主成分分析(Principal components analysis,以下简称PCA)是最重要的降维方法之一。在数据压缩消除冗余和数据噪音消除等领域都有广泛的应用。一般我们提到降维最容易想到的算法就是PCA,下面我们就对PCA的原理做一个总结。1. PCA的思想 PCA顾名思义,就是找出数据里最主...转载 2018-04-28 15:39:27 · 1460 阅读 · 0 评论 -
浅谈协方差矩阵
转自:http://pinkyjie.com/2010/08/31/covariance/今天看论文的时候又看到了协方差矩阵这个破东西,以前看模式分类的时候就特困扰,没想到现在还是搞不清楚,索性开始查协方差矩阵的资料,恶补之后决定马上记录下来,嘿嘿~本文我将用自认为循序渐进的方式谈谈协方差矩阵。统计学的基本概念学过概率统计的孩子都知道,统计里最基本的概念就是样本的均值,方差,或者再加个标准差。首先...转载 2018-04-28 15:42:05 · 190 阅读 · 0 评论