论文研读-多目标差分进化研究及应用-1 Review
觉得有用的话,欢迎一起讨论相互学习~
-
此篇文章为
博士学位论文: 基于差分进化算法的多目标优化方法研究及其应用-徐斌
的论文学习笔记,只供学习使用,不作商业用途,侵权删除。并且本人学术功底有限如果有思路不正确的地方欢迎批评指正! -
也许这篇文章比较古老,不过作为一篇博士论文,引用的文章十分经典并且具有代表性,值得学习~
1.4 差分进化算法
- 是一种容易理解、结构简单、可调参数少、鲁棒性强的优化算法。和遗传算法一样,也属于进化算法的范畴。做为一种全新的启发式搜索算法,相比其它智能优化算法,具有很大地优势。
-
- 采用的是浮点数编码,因而它特别适合处理连续空间的优化问题;
-
- DE同样需要执行变异和交叉操作,但是,的变异是基于差分向量的,结构简单,易于实现。且一般是先执行变异操作,后执行交叉操作;
-
- DE可调控制参数种群规模,缩放因子及交叉参数比较少,因而简单的参数控制策略就能取得满意的优化效果。
-
- DE的贪婪选择,具有保持最优解的特性
1.4.1 DE基本概念与结构(单目标)
- 其中n表示决策向量的维度数,sn是一个随机整数满足[1,n],对于每个解向量需要有一个sn,对于解向量中的每一个维度需要有一个随机数Cr
- 这里觉得这里写的有点问题,
- v是什么伪代码里面根本没有
- 既然j已经对所有维度进行遍历了,要sn有何用
- 参数设置是真的没有讲清楚,参数又多,不明不白
交叉操作
- 这一段的交叉操作是不是有点故弄玄虚了
- 从算法实际来看二项式交叉就是离散的单点变异,交叉位点根据随机数选出,而指数交叉法则是连续的多点变异,交叉位点的长度根据l设置,交叉的位点是随机的设置为k(那么很明显,这种方式和指数有什么关系?)
选择操作
说明图例
- 值得说明的是,该图采用的是的变异方式和二项式交叉方式。图中虽然 给出了所有可能的但实际应用当中标准的每一个经过变异和交叉后只会生成一个。
参数设置
1.4.2 DE的研究现状
- 许多研宄者们针对当前中存在的局限性,提出了许多基于的改进的算法。根据改进方向不同,大体上可以分为4类:参数控制策略、新的变异交叉策略、混合策略以及多种群改进策略。
参数控制
- JDE-2[57],JADE[62],JDE[65],DESAP[66],SPDE[67],MOSADE[68]
- SaDE[69], TEVC_SaDE[70], CoDE[71], MOSaDE[72],OW-MOSaDE[73]
新型交叉算子
DEGL[58], DE for Constrained problem[74], TDE[75], HdDE[76], MOEAD-HOP [77], OXDE[78]
混合差分进化算法
- 混合方法,根据freelunch原理
DE/EDA[82], DEahcSPX [83],ODE [84],DECLS [85],DEcDE[86], PSO-DE[87]
多种群策略
MDE[88], DECC[89]
1.4.4 用差分进化算法求解多目标优化问题
- 由于DE在单目标优化问题表现出的优良特性使得研究者们尝试使用其来处理MOPs,需要着重考虑的是以下两方面的问题。
- 如何选择和保留最优个体解,即如何分配个体适应度
- 如何提高种群的分布性和分散性
GDE1-GDE3