POJ - 1696 Space Ant( 极角排序)

22 篇文章 0 订阅
2 篇文章 0 订阅

解题思路:其实无论输入什么样的点集,一定可以走完全部n个点的,这是凸包的性质决定   找上一条边的凸组合的第一条边,然后再找这条边的凸组合的第一条边,以此类推


#include <iostream>

#include <string.h>
#include <stdio.h>
#include <algorithm>
#include <math.h>

using namespace std;
#define maxn 20000
int top = 2;
struct Point
{
    double x,y,len;
    int id;
} Pt[maxn],Stack[maxn],Point_A;

double Cross( Point a, Point b, Point c)
{
    return (b.x - a.x)*(c.y - a.y) - (b.y - a.y)*(c.x - a.x);
}

double Dis(Point a, Point b)
{
    return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y)*(a.y - b.y));
}

void FindPoint( int n)
{
    int i,tempNumber = 0;
    Point tempPoint ;
    Point_A = Pt[0];
    for(  i = 0; i< n; i++)
    {
        if(Pt[i].y < Point_A.y || Pt[i].y == Point_A.y && Pt[i].x < Point_A.x)
        {
            tempNumber = i;
            Point_A = Pt[i];
        }
    }
    tempPoint = Pt[0];
    Pt[0] = Point_A;
    Pt[tempNumber] = tempPoint;
}

bool cmp( Point a, Point b)
{
    double k = Cross(Point_A, a, b);
    if( k > 0) return true;//顺时针方向
    if( k < 0) return false;
    a.len = Dis(Point_A,a);
    b.len = Dis(Point_A,b);
    return a.len < b.len;
}

void Graham( int n)
{
    int i;
    Stack[0] = Pt[0];
    Stack[1] = Pt[1];
   // cout<<Pt[1].x<<Pt[2].x<<endl;
    for( i = 2; i<n; i++)
    {
        while(Cross(Stack[top-1],Stack[top],Pt[i]) < 0 && top > 1)
            top--;
        Stack[++top] = Pt[i];
    }

}

int main()
{
    int i,Num, t;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d",&Num);
        for( i = 0; i < Num; i++)
        {
          scanf("%d %lf %lf", &Pt[i].id, &Pt[i].x , &Pt[i].y);
        }
        FindPoint(Num);
        //cout<<Point_A.x<<" "<<Point_A.y<<endl;
        printf("%d %d",Num, Point_A.id);
         for( i = 1 ;i < Num; i++)
            {
                 sort(Pt + i, Pt + Num ,cmp);
                 printf(" %d",Pt[i].id);
                 Point_A = Pt[i];
            }
        printf("\n");
        //Graham(Num);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值