离散数学之图

本文介绍了图论的基本概念,包括无向图、有向图、度数、连通性、欧拉图和哈密顿图等。讨论了图的性质,如握手定理、点割集与边割集,并提到了平面图的欧拉公式。此外,还涵盖了树的定义及其与生成树的关系,以及最小生成树的构建算法。
摘要由CSDN通过智能技术生成

图的概念

G G G 的定义: G = < V , E , φ > G = <V,E,\varphi> G=<V,E,φ>。其中, V V V 是点集, E E E 是边集, φ \varphi φ 是点与边的对应关系

a a a 到点 b b b 的有向边,记 < a , b > <a,b> <a,b>;点 a a a 到点 b b b 的无向边,记 ( a , b ) (a,b) (a,b)

边与其两个端点相连。无向图中,称之为关联;有向图中,称之为相邻

点的度:该点作为边端点的次数

孤立点:度为 0 的点

悬挂顶点:度为 1 的点

悬挂边:悬挂顶点的边

平行边:两条边的起点和终点分别相同

环:起点和终点是同一个点的边

G G G 的最大度,记 Δ ( G ) \Delta (G) Δ(G);最小度,记 δ ( G ) \delta (G) δ(G)

有向图还细分为出度、入度

握手定理:无向图和有向图中,所有顶点度数之和等于图的边数的二倍;有向图中,所有顶点出度之和等于所有顶点入度之和等于图的边数

数列可图化,当且仅当数列所有元素之和为偶数

多重图:含平行边的图

简单图:不含平行边和环的图

n n n 阶完全图:有 n n n 个顶点的完全图,记为 K n K_n Kn

完全无向图:每个节点都与其余节点相连,构成的简单无向图;

完全有向图:每对节点中都有相反的两条有向边,构成的简单有向图

正则图:所有顶点的度数都一样。完全图是正则图的特例

子图:对原来图中的边和节点进行删减后的图

生成子图:对原来图中的边进行删减后的图。生成子图是子图的特例

带权图:边有权值的图

图的联通性

通路、回路

初级通路(路径)、初级回路(圈):所有的点不同

简单通路、简单回路:所有的边不同

连通图:任意点都是连通的;等价定义,连通图的连通分支为 1

连通分支:连通关系的导出子图,记 W ( G ) W(G) W(G)

强连通图:有向图中,任意两个节点都相互可达

单向连通图:有向图中,任意两个节点至少存在一个点到另一个点

弱连通图:将有向图变为无向图,仍然是连通图

点割集与边割集

G − v G-v Gv:在图 G G G 中删除点 v v v 以及关联的边

G − V ′ G-V' GV:在图 G G G 中删除集合 V ′ V' V 中所有的点以及点所关联的边

G − e G-e Ge:在图 G G G 中删除边 e e e

G − E ′ G-E' GE:在图 G G G 中删除集合 E ′ E' E 中所有的边

V ′ V' V V V V 真子集, V ′ ′ V'' V′′ V ′ V' V 真子集。首先进行 G − V ′ G-V' GV 操作后,是非连通图,再将原来的图进行 G − V ′ ′ G-V'' GV′′ 操作后,连通性不变。则 V ′ V' V 就是点割集。点割集只含一个元素,则该元素称之为割点

E ′ E' E E E E 真子集, E ′ ′ E'' E′′ E ′ E' E 真子集。首先进行 G − E ′ G-E' GE 操作后,是非连通图,再将原来的图进行 G − E ′ ′ G-E'' GE′′ 操作后,连通性不变。则 $ E’ $ 就是边割集。边割集只含一个元素,则该元素称之为桥

邻接矩阵和可达矩阵

出度是所有横向元素和,入度是所有纵向元素和

A 1 , A 2 , . . . , A n A^1, A^2,...,A^n A1,A2,...,An 矩阵的第 [ i ] [ j ] [i][j] [i][j] 个元素代表长度为 1 , 2... , n 1,2...,n 1,2...,n v i v_i vi v j v_j vj 的边的个数

A 1 , A 2 , . . . , A n A^1, A^2,...,A^n A1,A2,...,An 矩阵的主对角线元素之和代表长度为 1 , 2... , n 1,2...,n 1,2...,n 的回路个数

A 1 , A 2 , . . . , A n A^1, A^2,...,A^n A1,A2,...,An 矩阵的所有元素之和代表长度为 1 , 2... , n 1,2...,n 1,2...,n 的通路个数

无向图是对称矩阵;简单图是布尔矩阵,且主对角线元素为 0

可达矩阵 P P P,若 v i v_i vi v j v_j vj 可达,则 $ P[i][j]$ 置 1,否则为 0

可达矩阵主对角线元素全为 1;图为强连通图,当且仅当可达矩阵元素全为 1

A 1 + A 2 + . . . + A n A^1+ A^2+...+A^n A1+A2+...+An 得到矩阵,将其非 0 元素改为 1,就是可达矩阵 P P P

欧拉图

欧拉通路:通过图中所有边一次且仅一次的通路

欧拉回路:通过图中所有边一次且仅一次的回路

欧拉图:有欧拉回路的图

半欧拉图:有欧拉通路无欧拉回路的图

欧拉通路是简单通路;欧拉回路是简单回路;环不影响欧拉性

无向图 G G G 为欧拉图当且仅当 G G G 连通且无奇度顶点

无向图 G G G 为半欧拉图当且仅当 G G G 连通且恰有两个奇度顶点

有向图 G G G 为欧拉图当且仅当 G G G 连通且每个顶点出度等于入度

有向图 G G G 有欧拉通路当且仅当 G G G 连通且恰有两个奇度顶点,其中一个入度比出度大,另一个出度比入度大一,其余出度、入度相等

哈密顿图

哈密顿通路:经过图中所有顶点一次且仅一次的通路

哈密顿回路:经过图中所有顶点一次且仅一次的回路

哈密顿图:有哈密顿回路的图

半哈密顿图:有哈密顿通路无哈密顿回路的图

哈密顿通路是初级通路;哈密顿回路是初级回路;环与平行边不影响哈密顿性

无向哈密顿图的必要条件:设无向图 G G G 是哈密顿图, V 1 V_1 V1 V V V 非空真子集,均有 W ( G − V 1 ) ⩽ | V 1 | W(G-V_1) \leqslant |V_1| W(GV1)V1

无向哈密顿图的充分条件:设 G G G n ( n > 2 ) n(n>2) n(n>2) 阶无向简单图,对任意不相邻的顶点 u , v u ,v u,v,均有 n ⩽ d ( u ) + d ( v ) n \leqslant d(u)+d(v) nd(u)+d(v)

无向哈密通路的充分条件:设 G G G n n n 阶无向简单图,对任意不相邻的顶点 u , v u ,v u,v,均有 n − 1 ⩽ d ( u ) + d ( v ) n-1 \leqslant d(u)+d(v) n1d(u)+d(v)

平面图

若图能重新绘制成边不想交的图,则称为平面图

欧拉公式:设 G G G n n n m m m 条边 r r r 个面的连通平面图,则 n − m + r = 2 n-m+r=2 nm+r=2

树:无回路的连通无向图。度数等于 1 的顶点称作树叶,度数大于等于 2 的顶点称作分支点.

平凡树:平凡图

森林:每个连通分支都是树的非连通的无向图

G G G n n n 阶级 m m m 条边无向图,以下命题等价

  1. G G G 是树
  2. G G G 中任意两个顶点间存在唯一路径
  3. G G G 中无回路,且 m = n − 1 m=n-1 m=n1
  4. G G G 是连通的,且 m = n − 1 m=n-1 m=n1
  5. G G G 是连通的,且任何边均为桥
  6. G G G 中无回路,但在不同顶点加上新边,则会构成含新边的唯一个圈

最小生成树

G G G 为无向连通图, G G G 的生成子图是树,则称为生成树,记 T T T

生成树的树枝: G G G T T T 中的边

生成树的弦: G G G 不在 T T T 中的边

余树:所有生成树的弦构成的导出子图

最小生成树:带权图中权值最小的生成树

最小生成树的算法:破圈法(删最大边)和避圈法(加最小边)

Kruskal 算法和 Prim 算法都是避圈法

  • 3
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值