我谈数学期望

本文探讨了Bayes决策中的期望风险、SVM的结构风险最小化方法以及神经网络的经验风险最小化特性,提及数学期望在赌博问题中的起源,并将其应用到模式识别中的挑战。同时,作者还反思了人性与决策过程中的“求而不得”现象。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Bayes决策是期望风险最小化,SVM是有理论保证的结构风险最小化,神经网络再怎么闹腾都是经验风险最小化。

期望风险就是损失的数学期望。数学期望,又称期望或均值,是随机变量按概率的加权平均,表征其概率分布的中心位置。

期望名字的由来源于赌博问题的研究。在17世纪,法国数学家帕斯卡和荷兰数学家惠更斯等人对赌博中的概率问题进行了深入研究。他们试图解决诸如“分赌注问题”等实际问题,即当赌博双方因某种原因中断游戏时,如何公平地分配赌资。这类问题涉及到了如何根据各种可能的结果及其发生的概率来计算一个“期望”的赢得金额。

惠更斯在1657年发表的著作《论赌博中的计算》中,明确提出了数学期望的初始形式。他通过计算每种可能结果与其对应概率的乘积之和,得到了一个表示平均预期收入的数值,即数学期望。

在模式识别中,由于联合分布通常是得不到的,所以期望风险总是遥不可及。我对期望的理解是“求而不得”所谓期望。最后引申一下人性问题的思考:人性总是不得而往,得而不惜。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值