四大模型的本质区别
four modern deep generative models: generative adversarial networks,
variational autoencoders, normalizing flows, and diffusion models
AE
虽然包含编码器和解码器结构,但主要关注于数据的重构误差,而非学习数据的概率分布。
VAE
VAE认为高维数据的分布通常取决于一个低维的隐变量(latent variable)。结合了自编码器和变分推断的思想,能够学习输入数据的潜在变量分布,并通过这些变量进行生成。VAE以概率编码器和概率解码器为基础,通过最大化对数似然来训练参数,VAE能够学习到输入数据的潜在变量分布,并生成与训练数据相似的新数据。这种基于概率的建模方式使得VAE能够生成多样化的数据样本。
待写