四大生成式模型的本质区别——GAN、VAE、流和扩散模型

四大模型的本质区别

four modern deep generative models: generative adversarial networks,
variational autoencoders, normalizing flows, and diffusion models

AE
虽然包含编码器和解码器结构,但主要关注于数据的重构误差,而非学习数据的概率分布。

VAE
VAE认为高维数据的分布通常取决于一个低维的隐变量(latent variable)。结合了自编码器和变分推断的思想,能够学习输入数据的潜在变量分布,并通过这些变量进行生成。VAE以概率编码器和概率解码器为基础,通过最大化对数似然来训练参数,VAE能够学习到输入数据的潜在变量分布,并生成与训练数据相似的新数据。这种基于概率的建模方式使得VAE能够生成多样化的数据样本。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

待写

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值