协方差与不相关

协方差(Covariance)度量两个随机变量之间的线性相关性。

定义

( X , Y ) (X, Y) (X,Y)是一个二维随机变量,若 E [ ( X − E ( X ) ) ( Y − E ( Y ) ) ] E\left[(X - E(X))(Y - E(Y))\right] E[(XE(X))(YE(Y))]存在,则称此数学期望为 X X X Y Y Y的协方差,或称为 X X X Y Y Y的相关(中心)矩,并记为
Cov ⁡ ( X , Y ) = E [ ( X − E ( X ) ) ( Y − E ( Y ) ) ] . \operatorname{Cov}(X, Y) = E\left[(X - E(X))(Y - E(Y))\right]. Cov(X,Y)=E[(XE(X))(YE(Y))].其中, E [ X ] E[X] E[X] E [ Y ] E[Y] E[Y]分别是 X X X Y Y Y的期望。特别有 Cov ⁡ ( X , X ) = Var ⁡ ( X ) \operatorname{Cov}(X, X) = \operatorname{Var}(X) Cov(X,X)=Var(X)

从协方差的定义可以看出,它是 X X X的偏差 “ X − E ( X ) X - E(X) XE(X)” 与 Y Y Y的偏差 “ Y − E ( Y ) Y - E(Y) YE(Y)” 乘积的数学期望。

由于偏差可正可负,故协方差也可正可负,也可为零:

  • Cov ⁡ ( X , Y ) > 0 \operatorname{Cov}(X, Y) > 0 Cov(X,Y)>0时,称 X X X Y Y Y正相关,这时两个偏差 ( X − E ( X ) ) (X - E(X)) (XE(X)) ( Y − E ( Y ) ) (Y - E(Y)) (YE(Y))有同时增加或同时减少的倾向。由于 E ( X ) E(X) E(X) E ( Y ) E(Y) E(Y)都是常数,故等价于 X X X Y Y Y有同时增加或同时减少的倾向,这是正相关的含义。

  • Cov ⁡ ( X , Y ) < 0 \operatorname{Cov}(X, Y) < 0 Cov(X,Y)<0时,称 X X X Y Y Y负相关,这时有 X X X增加而 Y Y Y减少的倾向,或有 Y Y Y增加而 X X X减少的倾向,这是负相关的含义。

  • Cov ⁡ ( X , Y ) = 0 \operatorname{Cov}(X, Y) = 0 Cov(X,Y)=0时,称 X X X Y Y Y不相关。当协方差为0时,表示两个随机变量之间没有线性关系。

随机过程的自相关或互相关用了相关这个词,却与相关性的概念不同。

相关比较通俗,各个学科都喜欢用,学科交叉后就会产生混淆

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值