协方差(Covariance)度量两个随机变量之间的线性相关性。
定义
设
(
X
,
Y
)
(X, Y)
(X,Y)是一个二维随机变量,若
E
[
(
X
−
E
(
X
)
)
(
Y
−
E
(
Y
)
)
]
E\left[(X - E(X))(Y - E(Y))\right]
E[(X−E(X))(Y−E(Y))]存在,则称此数学期望为
X
X
X与
Y
Y
Y的协方差,或称为
X
X
X与
Y
Y
Y的相关(中心)矩,并记为
Cov
(
X
,
Y
)
=
E
[
(
X
−
E
(
X
)
)
(
Y
−
E
(
Y
)
)
]
.
\operatorname{Cov}(X, Y) = E\left[(X - E(X))(Y - E(Y))\right].
Cov(X,Y)=E[(X−E(X))(Y−E(Y))].其中,
E
[
X
]
E[X]
E[X]和
E
[
Y
]
E[Y]
E[Y]分别是
X
X
X和
Y
Y
Y的期望。特别有
Cov
(
X
,
X
)
=
Var
(
X
)
\operatorname{Cov}(X, X) = \operatorname{Var}(X)
Cov(X,X)=Var(X)。
从协方差的定义可以看出,它是 X X X的偏差 “ X − E ( X ) X - E(X) X−E(X)” 与 Y Y Y的偏差 “ Y − E ( Y ) Y - E(Y) Y−E(Y)” 乘积的数学期望。
由于偏差可正可负,故协方差也可正可负,也可为零:
-
当 Cov ( X , Y ) > 0 \operatorname{Cov}(X, Y) > 0 Cov(X,Y)>0时,称 X X X与 Y Y Y正相关,这时两个偏差 ( X − E ( X ) ) (X - E(X)) (X−E(X))与 ( Y − E ( Y ) ) (Y - E(Y)) (Y−E(Y))有同时增加或同时减少的倾向。由于 E ( X ) E(X) E(X)与 E ( Y ) E(Y) E(Y)都是常数,故等价于 X X X与 Y Y Y有同时增加或同时减少的倾向,这是正相关的含义。
-
当 Cov ( X , Y ) < 0 \operatorname{Cov}(X, Y) < 0 Cov(X,Y)<0时,称 X X X与 Y Y Y负相关,这时有 X X X增加而 Y Y Y减少的倾向,或有 Y Y Y增加而 X X X减少的倾向,这是负相关的含义。
-
当 Cov ( X , Y ) = 0 \operatorname{Cov}(X, Y) = 0 Cov(X,Y)=0时,称 X X X与 Y Y Y不相关。当协方差为0时,表示两个随机变量之间没有线性关系。
随机过程的自相关或互相关用了相关这个词,却与相关性的概念不同。
相关比较通俗,各个学科都喜欢用,学科交叉后就会产生混淆。