[系列]参数估计

系列

统计学中期望风险最小的贝叶斯估计是,计算估计值和真实值偏差的数学期望。最小均方估计实际上实际计算以后验概率为概率的参数的均值,而最大后验概率是后验概率的峰值对应的参数。这两者的区别在于前者找平均或者找最大。

概率密度估计中的贝叶斯估计,其目的是从有限样本估计总体分布。与期望风险最小的贝叶斯参数估计是不同的概念。之所以命名贝叶斯还是因为用到了贝叶斯公式,首先需要计算后验概率密度。然后以后验概率密度作为概率密度,计算未知参数的概率密度函数的数学期望,作为总体估计。这与贝叶斯参数估计的最小均方估计异曲同工。如果增加样本数量可以使后验概率序列逐渐尖锐,那这就和最大后验概率的思想异曲同工了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值