矩阵对角化→实对称矩阵的对角化→实对称半正定矩阵的对角化

上篇:特征值→相似矩阵→矩阵对角化(特征值分解)

实对称矩阵正交对角化

  • 实对称矩阵是指满足 A = A T \bm A = \bm A^{\mathsf {T}} A=AT的矩阵,其中 A T \bm A^{\mathsf T} AT A \bm A A的转置矩阵。
  • 对称矩阵的特征值均为实数。
  • 实对称矩阵可相似对角化,且相似对角矩阵中的元素为矩阵的特征值。实对称矩阵可以通过正交矩阵对角化,即存在由其单位化特征向量作为正交基组成的正交矩阵 P P P,使得 P T A P = Λ \bm P^{\rm T}\bm A\bm P = \bm \varLambda PTAP=Λ,其中 Λ \bm \varLambda Λ是以 A \bm A A的特征值为对角元素的对角矩阵。

实对称半正定矩阵正交对角化

  • 半正定矩阵是特殊的对称矩阵,其特征值均为非负实数。
  • 半正定矩阵的特征值非负,可以找到一组正交的特征向量,将其单位化后构成正交矩阵 P P P,使得 P T A P = Λ \bm P^{\rm T}\bm A\bm P = \varLambda PTAP=Λ,其中 Λ \varLambda Λ的对角元素为 A \bm A A的非负特征值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值