实对称矩阵正交对角化
- 实对称矩阵是指满足 A = A T \bm A = \bm A^{\mathsf {T}} A=AT的矩阵,其中 A T \bm A^{\mathsf T} AT是 A \bm A A的转置矩阵。
- 对称矩阵的特征值均为实数。
- 实对称矩阵可相似对角化,且相似对角矩阵中的元素为矩阵的特征值。实对称矩阵可以通过正交矩阵对角化,即存在由其单位化特征向量作为正交基组成的正交矩阵 P P P,使得 P T A P = Λ \bm P^{\rm T}\bm A\bm P = \bm \varLambda PTAP=Λ,其中 Λ \bm \varLambda Λ是以 A \bm A A的特征值为对角元素的对角矩阵。
实对称半正定矩阵正交对角化
- 半正定矩阵是特殊的对称矩阵,其特征值均为非负实数。
- 半正定矩阵的特征值非负,可以找到一组正交的特征向量,将其单位化后构成正交矩阵 P P P,使得 P T A P = Λ \bm P^{\rm T}\bm A\bm P = \varLambda PTAP=Λ,其中 Λ \varLambda Λ的对角元素为 A \bm A A的非负特征值。