柯西-施瓦茨不等式——相似系数值域[-1,1]的理论保证

定理 向量的内积满足
⟨ x , y ⟩ 2 ⩽ ⟨ x , x ⟩ ⟨ y , y ⟩ \langle {\boldsymbol x}, {\boldsymbol y} \rangle^2 \leqslant \langle {\boldsymbol x}, {\boldsymbol x} \rangle \langle {\boldsymbol y}, {\boldsymbol y} \rangle x,y2x,xy,y

其中,等号成立的充要条件是向量 x {\boldsymbol x} x y {\boldsymbol y} y线性相关。该式称为柯西-施瓦茨不等式(Cauchy-Schwarz inequality)。

这条定理描述了向量内积的一个重要性质,即柯西-施瓦茨不等式。该不等式表明两个向量 x {\boldsymbol x} x y {\boldsymbol y} y的内积的平方不超过这两个向量各自内积的乘积。柯西-施瓦茨不等式的等号成立的条件,即当两个向量 x {\boldsymbol x} x y {\boldsymbol y} y线性相关时,等号成立。同时,它还给出了一个特例,即当向量 x {\boldsymbol x} x为零向量时,等号显然成立。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值