定理 向量的内积满足
⟨
x
,
y
⟩
2
⩽
⟨
x
,
x
⟩
⟨
y
,
y
⟩
\langle {\boldsymbol x}, {\boldsymbol y} \rangle^2 \leqslant \langle {\boldsymbol x}, {\boldsymbol x} \rangle \langle {\boldsymbol y}, {\boldsymbol y} \rangle
⟨x,y⟩2⩽⟨x,x⟩⟨y,y⟩
其中,等号成立的充要条件是向量 x {\boldsymbol x} x和 y {\boldsymbol y} y线性相关。该式称为柯西-施瓦茨不等式(Cauchy-Schwarz inequality)。
这条定理描述了向量内积的一个重要性质,即柯西-施瓦茨不等式。该不等式表明两个向量 x {\boldsymbol x} x和 y {\boldsymbol y} y的内积的平方不超过这两个向量各自内积的乘积。柯西-施瓦茨不等式的等号成立的条件,即当两个向量 x {\boldsymbol x} x和 y {\boldsymbol y} y线性相关时,等号成立。同时,它还给出了一个特例,即当向量 x {\boldsymbol x} x为零向量时,等号显然成立。