极大似然估计例题——正态分布的极大似然估计

设总体 X ∼ N ( μ , σ 2 ) X \sim N(\mu, \sigma^2) XN(μ,σ2),其中 μ \mu μ σ 2 \sigma^2 σ2 是未知参数,取样本观测值为 x 1 , x 2 , ⋯   , x n x_1, x_2, \cdots, x_n x1,x2,,xn,求参数 μ \mu μ σ 2 \sigma^2 σ2 的最大似然估计。


总体 X X X 的概率密度函数为
f ( x ; μ , σ 2 ) = 1 2 π σ e − ( x i − μ ) 2 2 σ 2 ( − ∞ < x < + ∞ ) , f(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}} \quad (-\infty < x < +\infty), f(x;μ,σ2)=2π σ1e2σ2(xiμ)2(<x<+),

则似然函数为
L ( μ , σ 2 ) = ∏ i = 1 n 1 2 π σ e − ( x i − μ ) 2 2 σ 2 = ( 2 π σ 2 ) − n 2 e − 1 2 σ 2 ∑ i = 1 n ( x i − μ ) 2 , L(\mu, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}} = (2\pi\sigma^2)^{-\frac{n}{2}} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2}, L(μ,σ2)=i=1n2π σ1e2σ2(xiμ)2=(2πσ2)2ne2σ21i=1n(xiμ)2,

取对数,得对数似然函数
ln ⁡ L ( μ , σ 2 ) = − n 2 ln ⁡ 2 π − n 2 ln ⁡ σ 2 − 1 2 σ 2 ∑ i = 1 n ( x i − μ ) 2 , \ln L(\mu, \sigma^2) = -\frac{n}{2} \ln 2\pi - \frac{n}{2} \ln \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2, lnL(μ,σ2)=2nln2π2nlnσ22σ21i=1n(xiμ)2,

关于 μ \mu μ σ 2 \sigma^2 σ2 分别求偏导,得似然方程组
{ ∂ ln ⁡ L ( μ , σ 2 ) ∂ μ = 1 σ 2 ∑ i = 1 n ( x i − μ ) = 0 , ∂ ln ⁡ L ( μ , σ 2 ) ∂ σ 2 = − n 2 σ 2 + 1 2 σ 4 ∑ i = 1 n ( x i − μ ) 2 = 0. \begin{cases} \frac{\partial \ln L(\mu, \sigma^2)}{\partial \mu} = \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu) = 0, \\ \frac{\partial \ln L(\mu, \sigma^2)}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \mu)^2 = 0. \end{cases} {μlnL(μ,σ2)=σ21i=1n(xiμ)=0,σ2lnL(μ,σ2)=2σ2n+2σ41i=1n(xiμ)2=0.

由此解得 μ \mu μ σ 2 \sigma^2 σ2 的最大似然估计值分别为
{ μ ~ = 1 n ∑ i = 1 n x i = x ˉ , σ 2 ~ = 1 n ∑ i = 1 n ( x i − x ˉ ) 2 , \begin{cases} \tilde{\mu} = \frac{1}{n} \sum_{i=1}^n x_i = \bar{x}, \\ \tilde{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2, \end{cases} {μ~=n1i=1nxi=xˉ,σ2~=n1i=1n(xixˉ)2,

最大似然估计量分别为
{ μ ~ = 1 n ∑ i = 1 n X i = X ˉ , σ 2 ~ = 1 n ∑ i = 1 n ( X i − X ˉ ) 2 . \begin{cases} \tilde{\mu} = \frac{1}{n} \sum_{i=1}^n X_i = \bar{X}, \\ \tilde{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2. \end{cases} {μ~=n1i=1nXi=Xˉ,σ2~=n1i=1n(XiXˉ)2.

从例可以看到,正态总体参数的最大似然估计与矩估计是相同的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值